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The authors study the effects on work of additive manufacturing
(AM), an emerging technology that may replace significant
segments of traditional manufacturing (TM). Compared to TM, AM
is more integrated and offers greater flexibility in design, materials,
and customizability; thus, it should entail more demanding tasks
and higher skill levels. The authors analyze vacancies for AM and
TM workers, focusing on plants that posted vacancies in both tech-
nologies to control for factors that may affect the content of job
postings. Findings show that AM jobs are more complex (with more
non-routine analytic and less routine cognitive content) in compari-
son to TM jobs, and AM jobs require more high-level technical
skills and more reasoning skills. The relative differences are larger
for lower-skill workers (operators) than for high-skill workers
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(engineers). The authors conclude that AM is an upskilling technol-
ogy that is skill biased in favor of low-skill workers and therefore
reduces the skill gap.

2

Technology affects workers’ tasks and demand for skills in diverse ways.
Computerization, introduced widely since the 1980s, has reduced the

routine content of tasks and enhanced non-routine cognitive tasks,
enriching high-skill workers’ tasks and productivity more than that of low-
skill workers. This shift has increased the skill gap and wage inequality.
Artificial intelligence, robots, and additive manufacturing are more recently
introduced general-purpose technologies. These substantially automated
technologies have raised concerns about the future of work. Will these tech-
nologies simplify the task content of jobs and reduce the demand for skills
for most workers, leaving only a few high-skill workers who design, develop,
and program machines? Currently, empirical evidence concerns primarily
robots, and findings are mixed (Borjas and Freeman 2019; Dixon, Hong,
and Wu 2021; McGuinness, Pouliakas, and Redmond 2021).

This article provides the first evidence on the effects of one emerging tech-
nology, additive manufacturing (AM), on work. AM deployment in industry is
currently limited but is rising rapidly and is predicted to transform
manufacturing, supply chains, the geography of production, and more. AM is
a computer-based integrated process in which layers of plastics, metals, and
other materials are deposited to generate a complete part or product with
complex geometry. Its flexibility enables extensive customizability, which
entails many product-dependent choices and requires experimentation—
more so than the subtractive, mold-based or forming processes used in tradi-
tional manufacturing (TM). We explore three central questions at the job
level: 1) How do tasks in AM and TM compare? 2) How do skill requirements
between the two compare? 3) How do the effects of AM differ between lower-
and higher-skill occupations?

We develop a framework to analyze how technology affects tasks and
skill requirements. We emphasize product flexibility and process integra-
tion, and we analyze how these affect task content of jobs in different
occupations as well as workers’ skill requirements. We argue that AM is
more flexible and more integrated than TM, implying a more complex task
environment for most workers: more non-routine analytic, less routine cog-
nitive, less sequentially and more reciprocally interdependent tasks. This
task environment requires higher-level technical and cognitive skills as com-
pared to TM skill requirements.

Our empirical investigation uses data on manufacturing vacancy postings
from January 1, 2014, to January 31, 2022, assembled by Burning Glass
Technologies. The content of job postings reflects what employers want
workers to do and know. We extract task and skill information by matching
terms included in job postings to a set of predetermined keywords that
describe particular tasks and skills. The content of job postings reflects not
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only differences implied by technology but also by unobservable factors
such as management philosophy and style of writing postings. To control
for such unobserved heterogeneity, instead of using propensity score
matching or similar techniques, we focus on plants that posted both AM
and TM jobs (at least five in each technology) in core occupations. This
within-plant matching permits identification of the effects of technology on
tasks and skill requirements, using variations within a plant over time and
between plants after controlling for plant fixed effects. We find that AM
increases job complexity and raises skill demand, at least as much for lower-
skill workers as for higher-skill workers.

A Theoretical Framework for Analyzing the Effects of Technology on Work

The production process brings together workers, machines, and software to
transform materials into products. Using the task framework, Acemoglu
and Restrepo (2019: 6) described a manufacturing process as follows:
‘‘Production requires the completion of a range of tasks. The production of
a shirt, for example, starts with a design, then requires the completion of a
variety of production tasks, such as the extraction of fibers, spinning them
to produce yarn, weaving, knitting, dyeing, and processing, as well as addi-
tional nonproduction tasks, including accounting, marketing, transporta-
tion, and sales. Each one of these tasks can be performed by human labor
or by capital (including both machines and software). The allocation of
tasks to factors determines the task content of production.’’

A large literature grounded in this framework has analyzed the effects of
technology on tasks and skill requirements. Many analyses focus on the
effects of computerization. The dominant explanation was put forth by
Autor, Levy, and Murnane (2003), who argued that computers take over
the execution of routine tasks and complement the efforts of workers who
carry out non-routine analytical and interactive tasks. They found that com-
puterization is greater in industries historically intensive in routine tasks,
and that computerization increases the incidence of non-routine analytical
and interactive tasks and reduces the incidence of routine tasks. Spitz-
Oener (2006) extended this argument and provided direct evidence on
skills from employee surveys and showed that skills, assessed through task
requirements, have become more complex, especially in occupations that
have experienced more rapid computerization. Borghans, ter Weel, and
Weinberg (2014) found that computerization increased demand for ‘‘soft’’
people skills. Ben-Ner and Urtasun (2013) found that job complexity before
computerization positively affects adoption of computerization, as well as
subsequent gains in task complexity, gain in complex (cognitive and techni-
cal) skills, and loss of some skills. Acemoglu and Restrepo (2019) showed
that technology changes the task content of jobs by replacing workers in
some tasks and by creating new tasks in which workers have a comparative
advantage.
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The literature on the effects of computerization focused on the replace-
ment of routine tasks and the enhancement of non-routine tasks by software
and computerized machines, including robots and automation. Most
manufacturing is now substantially computerized. To evaluate the impact of
various technologies or techniques of production on work, it is necessary to
examine features in addition to their degrees of reliance on computers. We
suggest product flexibility and process integration. These have been central in
the study of the effects of technology on work organization by Thompson
(1967), Sethi and Sethi (1990), MacDuffie (1995), Stabell and Fjeldstad
(1998), Akcxomak, Borghans, and ter Weel (2011), and others.

Technologies of production differ in terms of flexibility in product
characteristics, materials, and customizability. Greater flexibility entails
numerous exceptions and choices and requires more experimentation with
alternative specifications of parameters to ensure desirable outcomes. This
experimentation results in more non-routine tasks and greater job complex-
ity. The execution of such tasks demands greater technical and reasoning
skills than are needed in less complex jobs (Perrow 1972; Sethi and Sethi
1990; Lindbeck and Snower 2000; Ben-Ner and Urtasun 2013).

The production process consists of a sequence of tasks. Tasks may be dis-
crete and separable from each other (as in the example of shirt making) or
closely linked and integrated with each other (as in the production of
chemicals). Separable tasks may be carried out by more than one worker,
all of whom utilize narrow skill sets (Borghans and ter Weel 2006), with
their sequentially interdependent work coordinated by managers. In inte-
grated technologies, several adjacent tasks are combined into a single job,
with reduced sequential interdependence and less need for coordination
between them (Thompson 1967; Stabell and Fjerdstad 1998; Lindbeck and
Snower 2000).

This theoretical framework suggests that the more flexible and the more
integrated a technology, the greater the complexity of workers’ jobs, imply-
ing demand for more technical and reasoning skills. Additional task
attributes and skill requirements may be affected by specific aspects of tech-
nology. We turn now to describe AM and TM and to evaluate differences in
flexibility and integration and their implications for workers’ tasks and
demand for skills.

Both AM and TM are computer-based but differ radically in how they
transform materials into products. TM entails 1) subtraction from a solid
block by filing, turning, milling, and grinding; 2) forming or forging using
presses; or 3) casting or injecting materials into product-specific limited-use
molds; subtractive methods are most common. Distinct components, pro-
duced separately, are assembled into a product through fitting, welding,
and similar methods. In AM, materials are deposited layer by layer to build
up a part or a finished product in a build space or a vat, without a mold.
The layers consist of a single material, usually polymers or metals, but
combinations of multiple materials with differing properties (conductivity,
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rigidity, and color) are feasible. The layers are fused together and solidified
through heating, cooling, or optical energy. The process is directed by com-
puter software. Specific AM techniques differ in how the layers are depos-
ited, joined, and solidified; the speed of production; the size of the product;
materials used; product geometric complexity; finishing; and other
parameters. Post-processing is required.1

AM and TM transform materials into products in a similar sequence of
activities. These include, as quoted earlier from Acemoglu and Restrepo
(2019), development, design, and choice of materials based on customer
demand; identification of production processes for various parts; assembly,
inspection, and shipping to the customer; with support services by manage-
ment, human resources, and other functions. However, key differences
occur between AM and TM in the design, development, and materials
choice stage and in the production stage. AM product design options are
much greater than in any of the TM techniques, offering substantially more
flexibility (Ben-Ner and Siemsen 2017; Quinlan and Hart 2020), which
permits extreme customizability (Jiang, Kleer, and Piller 2017). AM produc-
tion is much more integrated, being performed in one machine, whereas
TM entails a longer sequence of multiple steps and multiple parts to create
one component (Rehnberg and Ponte 2018).

Two products made by AM and TM are illustrated in Online Appendix
(OLA) A, Figure OA.1. (Hereafter, numbering for Online Appendix mate-
rial is prefaced with an ‘‘OA.’’) The first example is a fuel nozzle tip for jet
engines, and the second is an air duct for cooling thermal printers. When
produced by TM, these products require the separate production of 20 and
8 parts, respectively (most by subtractive methods, some by casting), and
assembly to achieve desired geometric properties. In AM, these products
are made of a single piece in compact machines like those shown in OLA
A, Figure OA.2. Current applications of AM are concentrated in geometri-
cally complex products, customized products and tools, products that
require multiple materials, and rapid prototyping of TM products (see OLA
A, Figure OA.3).

The differences in the flexibility and integration features of AM and TM
have significant implications for workers’ tasks and skills. The exploitation
of flexibility presents challenges to engineers in ideation, research, design,
and product development to ensure product strength, durability, cost, and
other objectives. This process requires experimentation, testing, and holistic
analysis of results. The same phases occur in TM, but AM solutions are
drawn from a larger solution space, implying more non-routine and variable
tasks, which therefore require higher-level technical and reasoning skills
than in TM (Friesike, Flath, Wirth, and Thiesse 2018; Zanoni et al. 2019).

1AM was introduced in the 1980s for prototyping and producing replacement parts. In recent years,
AM capabilities have expanded dramatically in terms of the parameters noted in the text.
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The greater flexibility in AM also entails more complex technical and
cognitive tasks for AM operators and technicians. They handle different
materials, develop or implement varying support structures in the build
space where the products are deposited, remove and inspect them, and do
some or all required post-processing. These tasks are more variable and less
routine than tasks in TM. Less product flexibility results in fewer changes
from established routines and less experimentation. Consequently, AM
operators and technicians must possess technical and reasoning skills that
exceed those of their TM counterparts.

The greater integration of the AM production process—carried out
mostly in one machine—implies that one AM worker is engaged with most
of it and must understand the relationship between materials, production
process, and the product.2 In TM, workers usually focus on one phase of
the production process. For example, investment casting, used for making
parts with relatively complex geometry, consists of several steps. A pattern is
produced from which the mold (master die) is made, from which comple-
mentary wax patterns are produced and combined to create the mold that
represents the product. This wax mold is then used to make ceramic molds,
into which molten metal is poured, afterward hardened, and then the
ceramic mold is removed to reveal the product. These multiple tasks are
carried out by workers located in different parts of a plant and whose work
is sequentially interdependent. In AM, sequential interdependence in pro-
duction is reduced and is internalized in one job (carried out by an opera-
tor or technician).

Because of more extensive and frequent experimentation in AM,
engineers need to consult with each other on the materials, design, and
production process suitable for a particular set of parameters. Engineers
also need to consult with and receive feedback from operators and
technicians about the feasibility of support structures, fragility of products,
and issues that arise in removal from the build space. This level of commu-
nication requires exchanges between engineers and production workers,
that is, reciprocal interdependence between them. For this process to be
effective, they should understand each other’s tasks, specifically, they should
possess some of each other’s skills. Interdependence requires communica-
tion and social skills to interact effectively with other workers. The two tech-
nologies require interactions, albeit of somewhat different kinds, but no
suggestion of significant difference in people skills.

We summarize the foregoing discussion in several hypotheses. In line
with the task framework, we hypothesize separately the effects of AM relative
to TM on the nature of tasks and the demand for skills required to support
the execution of such tasks.

2Post-processing may be done by AM workers. If the removal of the product from the support struc-
ture is complicated or the product is combined with other products to create a part, post-processing may
involve TM workers.
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Tasks. Compared to TM tasks, AM tasks are (T1) cognitively more complex,
(T2) less complex manually, (T3) more reciprocally interdependent, and (T4)
less sequentially interdependent.

Technological change may induce upskilling of both lower- and higher-
skill workers, de-skilling of both, bifurcated effects, and mixed effects with
increases in demand for some skills and decreases in demand for other
skills. In OLA B, we present a model (based on Lucas 1988) of alternative
possibilities of technology-induced skill change relative to initial skill level.
Our discussion above implies that effects of AM on demand for various skills
are in the same direction for low- and high-skill occupations. Our theoreti-
cal framework, however, is not sufficiently specific to predict the relative
change in demand for skills by occupations.

Skills. Compared to TM, AM demand (S1) for technical engineering skills is
greater, (S2) for operations skills is lower, (S3) for reasoning skills is greater, and
(S4) for people skills is similar.

Differences between AM and TM tasks and skills may be inflated by the
newness of AM. Newness may entail learning about the optimal task content
and skill requirements, which may be reflected in hoarding skills to handle
unexpected demands (Autor 2013; Zanoni et al. 2019; Quinlan and Hart
2020). We conjecture that the differences between AM and TM in tasks and
skills may moderate over time.

In the comparison of AM and TM we assumed, implicitly, that they are
deployed in similar contexts. Companies that have advanced technical capa-
bilities are more likely to introduce a new technology such as AM in addi-
tion to TM (Rehnberg and Ponte 2018), if they judge that the new
technology promises a favorable benefit–cost relationship (Bresnahan,
Brynjolfsson, and Hitt 2002). In our empirical analysis, we focus on postings
made by plants that use AM in addition to TM. We do not model their
choice but analyze differences in tasks and skills conditional on the use of
both AM and TM.3

Data and Measures

To understand differences in tasks and skills between AM and TM, we study
the views of employers as expressed in the content of job vacancy postings.
Our data set consists of online job postings in the US manufacturing sector
from January 1, 2014, to January 31, 2022. The data were collected by
Burning Glass Technologies (BGT), a labor market analysis consulting firm.

3An ideal approach would be to model adoption separately, but doing so is often not feasible for new
technologies with very low initial adoption rates. For a similar situation concerning adoption of robotics,
see Dixon, Hong, and Wu (2021).
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BGT scrapes vacancy postings from more than 40,000 online job boards
and company websites. It removes duplicate postings and systematically
classifies the information contained in the postings, including occupation,
tasks, requisite skills, education, certification, and experience, as well as
employer name, industry, and location. BGT data have been used to analyze
jobs and skills in several recent articles, including Hershbein and Kahn
(2018), Deming and Kahn (2018), Börner et al. (2018), and Deming and
Noray (2020), all of which provided extensive descriptions of the data;
hence, we do not repeat it here. These and other authors (e.g., Atalay,
Phongthiengtham, Sotelo, and Tannenbaum 2020) suggested that job
postings are a useful source of information about workers’ tasks and skills
for comparisons across occupations, industries, and over time.

We classify a posting as AM if it contains terms such as ‘‘additive
manufacturing’’ and/or ‘‘3D printing.’’ This criterion does not account for
all new AM hires, as some postings may not mention AM but have the inten-
tion to provide AM training after hiring. Similarly, current employees may
be trained for AM without recourse to external hiring (Behaghel, Caroli,
and Walkowiak 2012). Our identification of AM postings is likely to result in
an undercount of new AM jobs, but we do not judge this as a source of bias
in findings. All other postings are classified as TM. TM consists of several
techniques; later in this article, in the section titled Extensions and
Robustness Checks, we compare AM with various TM techniques, showing
that the main findings are not affected by the aggregation into TM.

We focus on core manufacturing occupations: engineers (2010 Standard
Occupational Classification [SOC] code 17-2000), technicians (SOC 17-
3020 and 17-3030), operators (SOC 49-0000 and 51-0000), and managers
(SOC 11-0000). Engineers are high-skill workers, operators are low-skill
workers, and technicians are middle-skill workers. Managers may be busi-
ness or operations oriented, with many in the high-skill category.

In total, 7,684,467 vacancies were posted between January 1, 2014, and
January 31, 2022, in the four occupations in manufacturing (North
American Industry Classification System [NAICS 31-33]) in the BGT data
set. We focus on postings that contain at least two terms (excluding job
title) made by establishments with a valid firm identifier and an address:
5,553,317 postings, of which 18,249 are in AM. Figure 1 presents the evolu-
tion of AM and TM postings in this sample. Very few AM postings appear
prior to 2014; the number of AM postings accelerated around 2016,
whereas TM postings exhibited a much more modest increase; the pan-
demic period was marked by variability in both AM and TM postings.

We identify establishments (plants) by geolocation coordinates and com-
pany name. Numerous plants posted just a few vacancies during the sample
period (because the establishments had low demand for new workers,
exited, changed names, or moved). Following others who work with BGT
data, we use plants that posted a certain minimum number of vacancies.
For plants that posted only AM jobs or only TM jobs—‘‘pure AM’’ and

262 ILR REVIEW



‘‘pure TM’’ plants, respectively—we require a minimum of five total
postings in the four occupations. For plants that posted jobs in both tech-
nologies—‘‘hybrid AM-TM’’ plants—we impose a minimum of five postings
in each technology. This minimum is intended to detect sustainable
operations.4

Table 1 provides information about the three types of plants that meet
the inclusion criteria. Most plants and postings are from pure TM plants.
Our sample contains only a handful of pure AM plants. Most postings by
hybrid plants are in TM. Hybrid plants hire many more engineers (approxi-
mately 38% of their postings in our four occupations) than pure TM plants
hire (16% of postings).5 Hybrid plants are larger, as indicated by many
more postings per plant than pure TM plants (799 vs. 32). Pure TM plants
are distributed across the manufacturing sector, whereas hybrid plants oper-
ate in various industries, with concentration in aerospace, medical devices,
automotive and parts manufacturing, and they belong to technologically

Figure 1. Quarterly Evolution of Additive Manufacturing (AM) and
Traditional Manufacturing (TM) Job Vacancies: Managers, Engineers, Technicians,

and Operators, 01/2014–01/2022

Source: Authors’ analysis of Burning Glass Technologies data.
Notes: The chart represents the index of number of quarterly job postings, first quarter of 2014 = 100 (87
postings in AM and 123,101 postings in TM).

4According to the US Bureau of Census ECNLOCMFG2012 data set, of all 297,171 NAICS 31-33
manufacturing plants in 2012, 30,203 employed four or fewer employees. Five postings in eight years
seems sufficient as the basis for a viable operation in a plant. We conduct robustness checks with higher
numbers of postings.

5Turnover rates may vary across occupations and types of plants, resulting in different job posting
rates. This finding is not material to our analysis, and we do not explore it further in this article.
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more advanced and larger firms. Within hybrid plants, 57% of AM postings
are for engineers, compared to 37% for TM. Pure AM plants are mostly
contract manufacturers; the share of engineer postings in these plants is
slightly less than one-third, lower than in hybrid plants but twice as high as
in pure TM plants. We do not study what is done in individual plants, but
information about several hybrid plants suggests that TM workers in the
four occupations are engaged in various aspects of making products, from
design, production planning, and purchasing, to setting up of tools and
machines, maintenance, production, quality control, data analysis, market-
ing, logistics, and more; some TM workers do post-processing for AM
products. AM workers in the four occupations are engaged in similar activi-
ties as TM workers, producing parts or products for external customers
within and outside the company (such as components in airplanes and
printers as illustrated in OLA A, Figure OA.1) and internal customers (such
as prototyping and making jigs and fixtures for use in TM production).

Job postings reflect differences in job requirements. We are interested in
evaluating differences that arise from technological differences between
AM and TM. Differences in tasks and skill requirements across plants may
arise from unobservable approaches to the design of jobs (Bloom and Van
Reenen 2007; Brenčič and Norris 2009; Feng and Valero 2020), differences
in the quality and productivity of workers (Syverson 2011), and differences
in the style of postings. To identify the effects of technology, we focus on
vacancies posted by hybrid AM-TM plants; this eliminates plant-level fixed
effects associated with unobservable heterogeneity. Thus, our analytical sam-
ple consists of 700 plants that posted at least 5 AM and 5 TM vacancies each,
with 559,255 postings in total, of which 11,096 were AM jobs (see Table 1).
This method of matching technologies within plants permits causal infer-
ence of the effects of AM relative to TM when we cannot implement

Table 1. Number of Plants, Firms, and Job Postings, by Occupation and by Plant
Type, 01/2014–01/2022

A. Pure AM plants B. Pure TM plants C. Hybrid AM-TM plants Total

Number of plants 39 119,827 700 120,566
Number of firms 34 31,357 297 31,688

AM postings TM postings AM postings TM postings Total

Manager 80 1,433,220 2,437 233,820 1,669,557
Engineer 91 607,880 6,302 205,328 819,601
Technician 46 289,034 1,009 29,365 319,454
Operator 78 1,537,169 1,348 79,646 1,618,241
Total 295 3,867,303 11,096 548,159 4,426,853

Notes: Pure AM plants posted only AM jobs, pure TM plants posted only TM jobs, and hybrid AM-TM
plants posted both AM and TM jobs during the sample period. The sample is restricted to pure AM and
pure TM plants that posted at least 5 jobs and hybrid plants that posted at least 5 AM and 5 TM jobs in
the four occupations. Each plant belongs to a firm; some firms have multiple plants.
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empirically a two-step model whereby choice of technology precedes analy-
ses of differences associated with technology.6 In the extensions and robust-
ness analyses, we use all observations listed in Table 1 as well as various
subsamples.

Task Attributes and Skills

We identify task attributes and skills that meet four overlapping criteria:
1) are directly related to our hypotheses, 2) are widely used in the related
literature, 3) provide a broad outlook on AM and TM, and 4) may be used
for validity and placebo tests.

The theoretical framework highlights the centrality of job complexity
and interdependence. We capture complexity through non-routine analytic,
routine cognitive, non-routine manual, and routine manual tasks and skills
that have been widely used in the literature, with non-routine reflecting
greater complexity and routine lesser complexity. Interdependence may be
reciprocal and sequential (the literature combines the two into interactivity).

We classify skills into four categories: 1) engineering (consisting of develop-
ment, design, and materials), 2) operations (inventory, tooling, maintenance,
automation, and production), 3) support (administration, management,
finance, and so forth), and 4) general skills, classified into reasoning (cogni-
tive skills and creativity) and people skills (social skills and character). These
skills are required in varying degrees across the range of jobs; engineering
skills are core skills for engineers, operations skills are core for operators, sup-
port skills are central to managers’ jobs, and general skills are needed in all
occupations. We have proposed hypotheses about engineering, operations,
and general skills, but include support skills to provide a richer picture of
differences across jobs and technologies and for use in some tests.

Measures

BGT uses machine-learning algorithms to convert the text of job postings
into strings of terms. These are words such as ‘‘creativity’’ or phrases such as
‘‘problem solving’’ and ‘‘electrical schematics design,’’ as well as technical
skills that refer to brand names, such as ‘‘Microsoft Office.’’ This procedure
considerably reduces the number of words employed to describe a job com-
pared to the original text. An example of a job posting and its counterpart
in BGT terms is presented in OLA A, Figure OA.4.

The BGT terms in each posting are the raw material from which we con-
struct our measures of task attributes and demand for skills, using the key-
word approach. This approach has been applied to source materials that

6Matching approaches that deal with similar situations include the widely used propensity score
matching and coarsened exact matching (Iacus, King, and Porro 2012). The latter was used by Dixon,
Hong, and Wu (2021) to identify the effects of robots on outcomes. Our within-plant matching, not com-
monly available to researchers, offers clear advantages associated with location, industry, management,
plant size, and other variables being the same for both technologies.
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describe the content of jobs, such as job descriptions, vacancy postings,
Dictionary of Occupational Titles (DOT) and O*NET, and employee and
employer surveys. The source material is matched to lists of keywords that
describe skills or tasks. The common measure is based on the count of
terms that match keywords. For example, Autor et al. (2003) considered a
task as routine cognitive if the DOT task description contains the keywords
‘‘set limits,’’ ‘‘tolerances,’’ or ‘‘standards,’’ and as routine manual if it contains
‘‘finger dexterity.’’ Spitz-Oener (2006) matched terms in job surveys to lists of
keywords to measure the strength of several task attributes. Similarly, Deming
and Kahn (2018), Deming and Noray (2020), and Börner et al. (2018) used
BGT data to measure diverse skills. Atalay et al. (2020) measured skills by
matching terms extracted from newspaper job ads to keywords. We follow the
approach and keyword lists developed by these authors.

Measures can be created based on 1) the count of matched terms
(Deming and Kahn 2018; Deming and Noray 2020), 2) a binary variable
that captures the presence of any matched term (Autor et al. 2003), 3) the
share of matched terms in the total number of keywords in a list (Spitz-
Oener 2006), and 4) the share of matched terms in the total number of
terms in a job posting (Michaels, Rauch, and Redding 2019; Atalay et al.
2020). The count of terms measure is straightforward: If, say, engineers in
AM have more terms related to engineering skills than do TM engineers,
then these skills are more important for AM engineers. The binary measure
is suited for cases with few terms. The share of matched terms in the num-
ber of keywords is the same for purposes of comparing AM and TM (both
have the same denominator). The share of matched terms in the total num-
ber of terms in a posting reflects the relative importance of different
measures, so, for example, a higher share of engineering skills for AM
engineers implies that, relative to other skills, it is more important in AM
than in TM. The difference between the share and count measures is that
the shares add up to unity (if all terms are accounted for in keyword lists),
so not all measures can be greater in one technology as compared to the
other, whereas with the count measure, all measures can be larger in one
technology than in the other (on average, we account for 57.8% of terms in
job postings). We use the share measure as our leading measure but repli-
cate the main analyses using the count and binary measures.

We construct measures for each task and skill using keyword lists from
Spitz-Oener (2006), Deming and Kahn (2018), Deming and Noray (2020),
Atalay et al. (2020), and BGT classifications of technical terms. Appendix
Table A.1 (referring to a brief appendix that falls at the end of the article text
rather than part of the Online Appendix) presents the principal keyword lists,
with more details in OLA A, Table OA.1. The keywords for task attributes are
exclusive to each attribute, and the keywords for skills are exclusive to each
skill. However, some keywords are used to identify both tasks and skills. This
overlap is unavoidable in the search for meaning in a limited word space; this
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precludes an analysis of the relationship between skills and task attributes.
Terms that identify AM are not included in the measures.

In sum, we create measures for each job posting by matching terms to
keywords, adding up the number of matches for each task attribute and skill
to obtain the count measures, then dividing by the total number of terms in
the posting and multiplying by 100 to obtain the share measures. For exam-
ple, in the job posting in OLA A, Figure OA.4, the measure of the task attri-
bute routine manual is 23.08: three matched terms (‘‘material handling
equipment,’’ ‘‘machine operation,’’ and ‘‘equipment maintenance’’)
divided by 13 (the number of terms in the posting) times 100.

Empirical Analysis

We start with an overview of select task attribute and skill requirement
measures for engineers and operators. Figure 2 presents share measures
and Figure 3 presents count measures for the analytical sample of hybrid
AM-TM plants for the entire sample period. The purpose of these figures is
to provide a broad overview of the key differences in task attributes and
demand for skills between AM and TM for high-skill and low-skill
occupations, and to highlight what the share and count measures may cap-
ture. The share and the count measures convey the same picture, with two
insignificant differences (in reciprocal interdependence for engineers and
in automation+production for operators). The non-routine analytic task
content is much larger for engineers than for operators, as one would
expect, and it is larger in AM than in TM for both occupations. The key
engineering skills are more important for engineers than for operators,
again as expected, and the demand for them is greater in AM than in TM
in both occupations. Reciprocal interdependence is greater in AM only for
operators, and so is the demand for cognitive skills. Automation and pro-
duction skill requirements are greater for AM engineers than for TM
counterparts; the picture is less clear for operators.

This summary suggests there may be significant differences between the
two technologies in the key occupations. Next, we turn to an examination
of means of all measures for the four occupations. These findings are visual-
ized in Figures A.1 and A.2, with means, standard deviations, and p value of
t-test of equality between AM and TM means shown in Tables A.2 and A.3.

Non-routine analytic is greater in AM, whereas routine cognitive is larger
in TM for engineers and operators (nonsignificant for managers and
technicians). The differences regarding manual tasks are mostly reversed:
non-routine manual is greater in TM (nonsignificant for engineers) and
routine manual is greater in AM for managers and engineers but not for
operators (nonsignificant for technicians). Thus, the means suggest that
cognitive tasks may be more complex and manual tasks may be less complex
in AM. Reciprocal interdependence is larger in AM only for the lower-skill
occupations, whereas sequential interdependence is significantly lower in
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Figure 2. Plant Level Means of Select Task and Skill Measures as Shares for Engineers
and Operators, by AM and TM, Hybrid AM-TM Plants, 01/2014–01/2022

Notes: See Notes to AppendixTable A.2, from which this figure is derived.

Figure 3. Plant Level Means of Select Task and Skill Measures as Counts for Engineers
and Operators, by AM and TM, Hybrid AM-TM Plants, 01/2014–01/2022

Notes: See Notes to OLA A, Table OA.2, from which this figure is derived.
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AM for the higher-skill occupations and higher for the lower-skill ones.
Regarding skills (as shown in Table A.3), engineering skill requirements are
larger in AM than in TM for the three skill groups. For operations, the skill
group of inventory, tooling, and maintenance shows substantially larger
values in TM than in AM. For the automation and production group, AM is
larger except for operators. In support, the administration-management-
finance-business group is similar in AM and TM (except for the larger value
for AM operators). For the machine learning (ML) and software group, TM
values are somewhat larger (significant for engineers). In the third group,
which includes computer support and data management, TM values are sig-
nificantly larger. Finally, cognitive skills and creativity (reasoning skills) are
somewhat larger in AM. Social skills and character are greater for TM
managers and engineers, but similar for the lower-skill occupations.7

The comparison of means of plant means does not account for the fact
that not all plants had both AM and TM vacancies in the same occupation.
The number of postings and the number of plants that posted them are
reported in the last two rows of Tables A.2 and A.3. Of the 700 hybrid
plants, 391 posted vacancies for AM managers (2,437 vacancies), and 688
plants sought TM managers (233,820 vacancies). A similar pattern is
observed for postings for other occupations. To conduct a within-plant
within-occupation comparison of means, we drop observations without
counterparts in the other technology in the same occupation in the same
plant. The resulting sample is slightly smaller, as shown in the last two rows
of OLA A, Tables OA.4 and OA.5; for example, in the matched sample 578
plants have both AM and TM engineers, 6,224 and 198,404 each, as com-
pared with 6,302 AM engineers in 588 plants and 205,328 TM engineers in
669 plants in the full hybrid plants sample. To exploit the matched aspect
of this sample, we conduct a non-parametric test, an extension of the
Wilcoxon test (described in the notes to OLA A, Tables OA.4 and OA.5)
that takes into consideration the unequal number of AM and TM postings
in each plant. The p values of the z-scores are presented in the tables.

The occupation-matched within-plant means are similar to the unre-
stricted, and the tests of equality yield similar conclusions. Next, we turn to
regression analysis to account for differences in tasks and skills over time
and for common effects across occupations and technologies within plants.

Regression Analysis at the Job Posting Level

Consider the following baseline regression:

yj ¼ b1AMj +
X3

o¼1

b2oxoj +b3Yearj +
X699

p¼1

b4pzpj +a+ ujð1Þ

7Summary statistics for the count measures are presented in OLA A, Tables OA.2 and OA.3, with visu-
alization in OLA A, Figures OA.5 and OA.6. The differences between AM and TM are consistent with
the differences reflected in the share measures.
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where yj is the measure of a task attribute or skill requirements in job post-
ing j. The coefficient b1 on AMj estimates the difference between AM and
TM (the omitted dummy variable). We capture occupational differences
using three occupation dummies xoj with o = Manager, Engineer, Technician
(Operator is omitted). To control for possible changes over time,8 we use a
year linear trend Yearj (Year2 was statistically insignificant). We include 699
plant dummies zpj (p indexes plants) to control for plant fixed effects. The
model includes an intercept a.

The effect of AM relative to TM may differ among occupations, so to con-
fine comparisons to within-occupation, we add interaction terms between
AMj and the four occupation dummies xoj (AMj is omitted). The effects of
AM may change over time, so we interact AMj with Yearj. Occupations may
change over time, so we interact Yearj with the four occupation dummies xoj

(Yearj is omitted). It is also possible that the AM occupation effects vary over
time, so we add interaction terms AMj 3Yearj3xoj (AMj 3Yearj is omitted).
The full model is as follows:

yj ¼
X4

o¼1

b1oAMj xoj +
X4

o¼1

b2oAMj Yearj xoj +
X4

o¼1

b3oYearj xoj

+
X3

o¼1

b4oxoj +
X699

p¼1

b5pzpj +a+uj

ð2Þ

OLA A, Tables OA.6 and OA.7 display the estimation results of the three
nested models: Model (i.e., column) A implements Equation (1) and
identifies the overall AM effect on y controlling for differences among
occupations, years, and plants. Model B adds two-way interactions between
technology and occupations and time trend, so the AM effect on y varies
with occupation and the time trend. Model C estimates Equation (2),
adding the three-way interactions, and thus identifying the AM effect in
each occupation and year off variations in task attributes and skills among
plants. The estimates in model A suggest that non-routine analytic is higher,
whereas non-routine manual and routine cognitive are both lower in AM.
Reciprocal interdependence does not differ, but sequential interdepen-
dence is lower in AM. All engineering skills are higher in AM, and so are
higher-level automation and production skills, but the basic operations
skills are lower in AM. In support skills, AM effects are mixed. AM is
higher in cognitive and creative skills and lower in character and social
skills. The estimates on the occupation dummies indicate an expected
hierarchy for most dependent variables; for example, non-routine

8In addition to the newness of AM, there may be time effects common to AM and TM. For instance,
employers tend to lower their demand for higher skills when unemployment rates are low (Modestino,
Shoag, and Ballance 2016). Our focus on hybrid AM-TM plants controls for the local labor market
conditions from which AM and TM workers are hired.
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cognitive task content is the highest for engineers, followed by managers,
technicians, and operators.

The results in models B and C are similar for most dependent variables,
and the estimates on the triple interactions are mostly statistically insignifi-
cant. We return to this issue later. The likelihood ratio tests comparing the
three models are listed in the B and C columns. Model B is better than
model A for all dependent variables. Model C dominates model B for sev-
eral measures, and we use it for interpretation. Tables 2 and 3 present the
OLS estimates for this model for task attributes and skills, respectively.

The results of this complex model are difficult to interpret. To aid inter-
pretation, we calculate estimated semi-elasticities of each measure with
respect to AM, separately for each occupation, evaluated at the means of
the explanatory variables in the last year of the sample period (2021), which
has the most observations in AM. Semi-elasticities permit comparison of size
effects across occupations and measures. Figure 4 presents the task
attributes. We see a substantial increase in non-routine analytic and
decrease in routine cognitive under AM in all occupations. The largest rela-
tive gain is for operators. An opposite and more moderate effect is regis-
tered for manual complexity. These findings support hypotheses T1 and
T2. The AM effect on reciprocal interdependence is positive for engineers
and nonsignificant for the rest. The AM effect on sequential interdepen-
dence is significantly negative for engineers and nonsignificant for the rest.
These findings weakly support T3 and T4.

We summarize the estimates from Table 3 with the semi-elasticities
presented in Figure 5. AM demands more of the three engineering skills in
all four occupations. This finding supports hypothesis S1. We observe a loss
of basic operations skills (inventory, tooling, and maintenance) in AM for
all four occupations, supporting hypothesis S2. A gain in production and
automation skills for managers, engineers, and technicians, but a loss for
operators, leads to mixed support for hypothesis S2. Regarding support
skills, we see small losses in AM (with a minor exception, operators’ large
gain in the first group, on a quite low base level). We had no hypothesis
stated for support skills. The effect of AM on demand for reasoning skills is
positive, except for engineers, thus mostly supporting hypothesis S3. AM
effects on social skills and character are negative for the higher-skill
occupations and non-negative for the lower-skill occupations, resulting in a
mixed outcome on S4.

Overall, the most substantive and statistically significant results suggest
greater analytical–cognitive task complexity and gains in engineering skills
for engineers and operators. The proportionate difference is larger for
operators than for engineers. Operators lost manual complexity, as well as
some production and automation skills; engineers gained such skills.
Managers and technicians track, with more mixed results, engineers and
operators, respectively. No weighting is available to compare the changes
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for engineers and operators, but our assessment is that AM did not disad-
vantage operators relative to engineers. We examine this issue in greater
detail in the final section, but the answer to our empirical question is that
our findings suggest that AM is not biased against low-skilled workers.

Table 2. Relationship between Technology and Task Attributes (Share Measures)
in Hybrid AM-TM Plants, 01/2014–01/2022, OLS Estimations

Dependent variables

Complexity Interdependence

Non-routine
analytic

Non-routine
manual

Routine
cognitive

Routine
manual

Reciprocal Sequential

AM 3 Manager 1.95*** 20.09 20.10 1.39*** 20.08 20.97***
(0.39) (0.06) (0.09) (0.44) (0.26) (0.29)

AM 3 Engineer 2.51*** 0.02 20.37*** 0.23 20.17 21.04***
(0.38) (0.09) (0.08) (0.20) (0.14) (0.15)

AM 3 Technician 1.55** 21.75*** 20.60** 0.30 0.53 0.66**
(0.72) (0.36) (0.28) (0.95) (0.45) (0.34)

AM 3 Operator 1.99*** 21.63*** 20.98*** 21.76** 1.56*** 20.43
(0.40) (0.28) (0.18) (0.68) (0.34) (0.37)

AM 3 Manager 3 Year 20.23 0.02 20.07** 0.25** 0.03 0.26**
(0.16) (0.03) (0.04) (0.13) (0.10) (0.11)

AM 3 Engineer 3 Year 20.09 0.09** 0.01 20.07 0.20*** 0.07
(0.14) (0.04) (0.03) (0.08) (0.06) (0.05)

AM 3 Technician 3 Year 0.20 0.14 20.08 20.10 20.22 20.11
(0.19) (0.12) (0.10) (0.28) (0.15) (0.13)

AM 3 Operator 3 Year 20.27 20.11 0.03 0.41* 20.46*** 0.35
(0.17) (0.10) (0.08) (0.25) (0.13) (0.23)

Manager 3 Year 20.09*** 0.00 0.01 20.03** 0.07*** 0.05***
(0.02) (0.01) (0.01) (0.01) (0.02) (0.01)

Engineer 3 Year 20.02 0.00 0.00 20.03 0.06*** 20.02
(0.05) (0.01) (0.01) (0.02) (0.02) (0.02)

Technician 3 Year 20.23*** 0.01 0.04 0.11 0.05 0.03
(0.07) (0.04) (0.03) (0.08) (0.04) (0.03)

Operator 3 Year 20.03 0.01 0.02 20.03 0.05 0.00
(0.03) (0.05) (0.02) (0.09) (0.03) (0.03)

Manager 2.64*** 23.71*** 20.84*** 27.14*** 1.66*** 0.99***
(0.13) (0.21) (0.09) (0.32) (0.12) (0.13)

Engineer 9.46*** 23.41*** 20.51*** 26.55*** 20.06 20.55***
(0.22) (0.20) (0.11) (0.34) (0.16) (0.14)

Technician 2.69*** 20.83*** 0.60*** 21.60*** 20.04 21.23***
(0.25) (0.23) (0.15) (0.35) (0.15) (0.16)

Intercept 2.51*** 6.63*** 1.60*** 9.82*** 3.77*** 4.24***
(0.14) (0.18) (0.08) (0.29) (0.11) (0.11)

Adjusted R 2 0.1871 0.1699 0.0380 0.2166 0.0669 0.0672
Mean 7.97 1.16 1.22 3.89 4.04 3.80
SD 10.07 4.02 3.77 7.51 5.97 6.04

Notes: Measures as shares (count of matched terms)/(total count of terms) in a posting multiplied by
100. The table shows estimates of model C that correspond to Equation (2) in the article. Year is
demeaned to reduce multicollinearity. Standard errors (in parentheses) clustered by plant to account
for overdispersion. The sample is sample C (Hybrid AM-TM plants) in Table 1, with a total of 559,255
postings. For variable definitions, see text. OLS, ordinary least squares.
***p \0.01; **p \0.05; *p \0.1.
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Extensions and Robustness Checks

In this section, we check whether the conclusions drawn from the main
analyses are robust to alternative estimation methods, alternative measures,
new samples as well as subsamples of the analytical sample, and specific TM
techniques and robotics. We also conduct placebo tests, investigate whether
task attributes and skill requirements have changed during the sample
period, and present a decomposition analysis.

Plant Characteristics Instead of Plant Fixed Effects

We estimate Equation (2) controlling for plant characteristics instead of
plant dummies. Plant characteristics include the number of plants owned
by the parent firm, the total number of vacancies in the four occupations
during the sample period (proxy for plant size), the ratio of the number of
engineer postings to the sum of engineer, technician, and operator postings
(proxy for technological complexity), a variable that identifies postings
made by service bureaus, and the plant’s 4-digit NAICS. The results,
presented in OLA A, Figures OA.7 and OA.8, are very similar to those in
Figures 4 and 5.

Figure 4. Estimates of Semi-Elasticities of AM for Task Attributes, from OLS Regressions,
Hybrid AM-TM Plants, 01/2014–01/2022

Notes: Based on estimates in Table 2. Whiskers represent 95% confidence intervals. OLS, ordinary least
squares.
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Figure 5. Estimates of Semi-Elasticities of AM for Skill Requirements from OLS Regression,
Hybrid AM-TM Plants, 01/2014–01/2022

Notes: Based on estimates in Table 3. Whiskers represent 95% confidence intervals. OLS, ordinary least
squares.
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Alternative Measures

Count of Matched Terms

We estimate a Poisson regression that accounts for the count nature of the
dependent variable and for the fact that the distribution of some measures
is skewed toward zero. OLA A, Tables OA.8 and OA.9 provide estimates for
the exponentiated version of Equation (2),9 and OLA A, Figures OA.9 and
OA.10 present the (constant) semi-elasticities that parallel Figures 4 and 5.
The two sets of figures are very similar.

Binary Variable Measure

We create a variable that equals 0 if no terms in a posting match any of the
keywords for a particular task or skill, and 1 otherwise. The estimated semi-
elasticities from a logit estimation are plotted in OLA A, Figures OA.11 and
OA.12, which are similar to Figures 4 and 5.

In sum, the findings of this article are largely independent of the choice
of a specific measure.

Alternative Samples

The 150 Largest Hybrid Plants by Number of AM Postings

This subsample accounts for almost half of the hybrid plants and more than
half of postings.10 The semi-elasticities in OLA A, Figures OA.13 and OA.14
are similar to those in Figures 4 and 5.

Service Bureaus

These are contract manufacturers that use both AM and TM to make cus-
tomized small-run parts and products for small and large firms. Service
bureaus are small to medium size with a few hundred employees.11 We
identified 16 such firms with 59 plants (27 hybrid, included in the analytical
sample, 2 pure AM and 30 pure TM). The number of AM and TM postings
in this sample is much more balanced: 943 AM postings (339 managers, 274
engineers, 122 technicians, and 208 operators) and 1,856 TM postings (793
managers, 251 engineers, 163 technicians, and 649 operators). We estimate
regressions with firm dummies (plant dummies overlap with technology in
single-technology plants) and plant characteristics. Overall semi-elasticities
are presented in OLA A, Figures OA.15 and OA.16. With a much smaller

9yj ¼ expð
P4

o¼1
b1oAMj xoj +

P4

o¼1
b2oAMj Yearj xoj +

P4

o¼1
b3oYearj xoj +

P3

o¼1
b4oxoj +

P699

p¼1
b5pzpj +a+uj Þ

10The total number of AM postings in this subsample is 6,522 (1,532 managers, 3,681 engineers, 627
technicians, and 682 operators), and of TM postings is 208,609 (77,207 managers, 93,054 engineers,
11,204 technicians and 27,144 operators).

11See, for example, one company’s description of its services: https://www.protolabs.com/resources/
blog/online-manufacturing-platform-can-offer-best-of-both-worlds-service-bureau-and-supplier-network/.
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sample, yearly estimates are less precise than those presented in Figures 4
and 5. The positive difference between AM and TM in non-routine analytic
task content found in the larger sample shrinks in the service bureaus sam-
ple. Differences in the three engineering skills are similar in the two
samples. Basic operations skills, which are estimated to be lower in AM than
in TM in the analytical sample, are more similar in service bureaus, whereas
the demand for higher operations skills is lower for AM engineers in service
bureaus, contrary to what we found in the analytical sample. Cognitive skills
are larger in AM only for operators in service bureaus, whereas in the ana-
lytical sample this was true for most occupations. However, creativity
demands are significantly larger in AM than in TM, except for managers, in
service bureaus, whereas in the analytical sample they were more similar.
Social skills are lower for AM operators in service bureaus but greater in the
analytical sample. Although more muted, most differences between AM and
TM in tasks and skills identified in the hybrid plants sample are sustained in
firms that operate in competitive niches producing similar customized
products in AM and TM.

The 50 Largest Manufacturing Firms with Hybrid Plants

We identify the 50 largest firms (by the number of postings) that have
hybrid plants; these include most of the largest US manufacturing firms. We
create a sample that includes their pure TM plants in addition to their
hybrid plants.12 We estimate regressions with firm dummies and plant
characteristics. Estimated semi-elasticities are in OLA A, Figures OA.17 and
OA.18, which show stronger AM effects than those identified in the analyti-
cal sample.

A Sample with Approximately 4.4 Million Postings

This sample is described in Table 1. We use regression with plant
characteristics; estimated semi-elasticities in OLA A, Figures OA.19 and
OA.20 are similar to those based on the hybrid plants sample (with stronger
AM skill effects).

Comparisons across Samples

We found that the differences between AM and TM are detected in various
samples, with minor variation. But do tasks and skills vary across types of
firms and plants? We compare select tasks and skills for engineers and
operators in AM and TM across three samples: the largest 50 firms, the ana-
lytical sample of hybrid plants, and the service bureaus. OLA A, Figures
OA.21 and OA.22 show the average of plant means of share measures and

12These firms had 5,975 AM postings (1,216 managers, 3,601 engineers, 506 technicians, and 652
operators) and 1,209,938 TM postings (499,489 managers, 318,695 engineers, 73,333 technicians, and
318,421 operators).
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OLA A, Figures OA.23 and OA.24 present count measures. We comment
below about differences across samples within AM and TM; comparison
between the two technologies was carried out for each sample just above.

Non-routine analytical task content and engineering skill requirements
are greater in the 50 largest firms and in hybrids than in service bureaus for
AM engineers and to a limited degree for TM engineers and operators; the
differences effectively disappear for AM operators. The demand for cogni-
tive skills does not vary much across samples. Reciprocal interdependence is
greater for operators in the largest 50 firms and hybrid plants than in ser-
vice bureaus, but the pattern is reversed for engineers. The demand for
automation and production is greatest in service bureaus, across the board.
These comparisons suggest that the larger firms place greater technical
demands on engineers than do service bureaus in both technologies,
whereas service bureaus emphasize automation and production skills for
both AM and TM engineers. As noted earlier, in all three samples and for
both occupations, AM is more complex and skill demanding than TM.

Specific TM Techniques and Robotics

In the analyses presented so far, we did not distinguish among types of
TM techniques, so our findings reflect differences between AM and TM on
average across techniques. Next, we identify skills linked to specific TM
techniques and compare them to AM (a minority of postings mention
technique-specific skills). The results are presented in OLA C. We summa-
rize key results here. AM increases cognitive task complexity and reduces
manual task complexity relative to TM without technique mention as well as
relative to specific techniques, with an exception, in part, for molding. AM
increases reciprocal interdependence for operators and reduces sequential
interdependence for engineers. AM increases engineering and automation
and production skill requirements and reduces other operations skill
demands (inventory, tooling, maintenance) relative to TM. We see a statisti-
cally marginally significant increase in demand for cognitive skills (and a
smaller one for creativity) in AM and a mixed and mostly statistically mar-
ginal effect on people skills relative to TM in general and specific
techniques. Molding, a TM technique, appears to have effects that are more
similar to AM than other techniques.

Robotics is used in diverse applications in various stages of the production
process. We examine the effect of AM and TM with and without robotics on
tasks and skills for engineers and operators. OLA C shows a greater demand
for robotics skill in AM than in TM (for example, 8.8% of AM operators are
required to have robotics skills as compared to 1.95% of TM operators). The
key conclusion of this analysis is that the inclusion of robotics does not affect
the relative impact of AM on tasks and skills. The addition of robotics to TM
does not increase cognitive complexity relative to AM, with or without
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robotics; similarly, TM with robotics does not require greater high-level skills
than AM (with or without robotics) but instead requires less.

Placebo and Validity Tests

Considerable heterogeneity occurs in the manager occupation, which
includes engineering, general, and other kinds of managers who need dif-
ferent types of skills and are affected differently by technology. We expect
that 1) managers with more technical jobs will have more non-routine ana-
lytic tasks and require more engineering skills than managers in less techni-
cal jobs have, 2) AM will increase non-routine analytical content of tasks
and demand for development and design engineering skills for technical
managers, and 3) AM will not affect demand for management and business
skills.

We use the first point as validation of our measures and the second and
third points as placebo tests in the identification of the AM (treatment)
effect. We would have preferred to use clear-cut technical and non-
technical managers for these tests, but our sample includes too few AM
postings in some sub-occupations. These sub-occupations include the most
and the least technical managers—engineering and general managers,
respectively—with marketing and industrial production managers between
these two. We created a sample of matched within-plant AM and TM
postings in these sub-occupations.13

OLA A, Table OA.10 presents summary statistics for the task and skill
measures noted above. Concerning the validity test, we observe that general
managers in both AM and TM have much lower values for measures of non-
routine analytic, development, and design in comparison to engineering
managers, with the other sub-occupations showing intermediate values. This
finding is as expected in point 1 above. Regarding the placebo test in point
2, these measures are, as expected, larger in AM than in TM for technical
managers, mostly statistically significant and, as expected, not different for
general managers. Concerning the placebo test in point 3, requirements for
management and business skills are similar in AM and TM, except for mar-
keting managers and a small difference for industrial managers.

Changes over Time

AM is a new technology and managers may need to learn how to structure
jobs and determine skill requirements. Risk-averse managers may play it safe
by asking for more skills than necessary. In the regression analyses, we con-
trolled extensively for time effects. Tables 2 and 3 show the estimates on the
occupational interactions between Year and AM. The estimates have a mix

13We tallied 234 AM and 2,133 TM postings for general managers in 70 plants, 890 AM and 23,906
TM for marketing managers in 149 plants, 294 AM and 3,499 TM industrial managers in 117 plants, and
287 AM and 10,758 TM for engineering managers in 105 plants.
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of positive and negative signs, most are statistically insignificant. We found
no measure for which a trend can be clearly identified as indicated by tests
of the significance of the net effect of time on semi-elasticities for all
measures in OLA A, Table OA.11. This outcome is evidence of no newness
effect.

OLA A, Figures OA.25 to OA.32 present the annual plant means of each
of the measures by occupation, for AM on the left and TM on the right.
Generally, TM, with tens of thousands of observations per year, is more sta-
ble for all measures and occupations than AM, which in its early years has
only dozens of observations. The fluctuations in AM measures are mostly
mild, and no obvious trends appear.

To test whether the more mature AM technology differs from TM, we
create a sample for the last three years, using the same criteria we used for
the entire sample, focusing on postings made by plants that had at least five
AM and at least five TM postings during 01/2019 to 01/2022. The sample
has 413 hybrid plants with 5,854 AM and 164,892 TM postings. We replicate
the main analysis and present the semi-elasticities in OLA A, Figures OA.33
and OA.34. The values are very similar to those in Figures 4 and 5. The
findings reported and discussed earlier stand, suggesting that differences
are not affected by the newness of AM.

Decomposition Analysis

We decompose the grand means of tasks and skills into occupational distri-
bution differences and technology differences. We use the share of postings
for the occupational decomposition method (e.g., Spitz-Oener 2006) in
panel A of OLA A, Table OA.12 and the Blinder-Oaxaca regression method
in panel B.14 The results are similar, suggesting that the overall difference
in several tasks and skills between AM and TM is attributable in part to tech-
nology differences and in part to varying occupational weights between
technologies in the total number of postings. For example, in panel A, 53%
of the overall difference in non-routine analytic are attributable to occupational
differences and 47% to technology differences; in panel B, 31% are attribut-
able to occupational differences. The share attributable to technology differ-
ence corresponds approximately to the semi-elasticities presented in Figures 4
and 5, such that higher semi-elasticities in the four occupations correspond to
a greater share of mean differences attributable to technology.

14The proportion of job postings for occupations in AM and TM in Table 1 shows that in AM, 22% of
postings are for managers, 57% for engineers, 9% for technicians, and 12% for operators, as compared
to 43%, 37%, 5%, and 15%, respectively, in TM. The higher proportion of managers in TM may reflect,
in part, the administration infrastructure of a plant that AM does not require separately and specifically.
In part, it may also reflect the need for more management in long separable technologies with coordina-
tion needs that are largely absent in AM.
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Discussion and Conclusions

The use of additive manufacturing, a new manufacturing technology, is
increasing rapidly. We analyzed the content of recent job postings in the
US manufacturing sector, distinguishing among multiple task attributes and
technical and general skill requirements, separately for a selection of
occupations. We found that AM entails more cognitively complex jobs and
requires greater high-level skills. The gains in complexity and skills are
slightly skewed in favor of lower-skill workers; however, they lose some
lower-level operational skills.

Specifically, focusing on engineers and operators, the high- and low-skill
workers in manufacturing, we found that AM jobs are more complex: They
have both more non-routine analytic content and less routine cognitive con-
tent. The gain in non-routine analytic content is higher for operators than
for engineers (semi-elasticity of 0.42 compared to 0.17 in Figure 4, differ-
ence significant at p value = 0.08), and the reduction in routine cognitive
content is greater (20.45 compared to 20.30, p value = 0.16). A decline in
manual complexity is experienced by operators, probably because of fewer
manual tasks. As displayed in Figure 5, AM operators gained relatively more
high-level technical engineering skills than engineers (semi-elasticities of
0.67 compared to 0.17, 0.51 compared to 0.31, and 0.48 compared to 0.46,
p values = 0.01, 0.19, and 0.46 for skills development, design, and materials,
respectively). Engineers’ smaller gain is, however, from a substantially
higher baseline than operators. This result is upskilling, with greater gains
for low-skill workers.

AM operators lose basic operations skills (such as tooling and mainte-
nance) more than engineers (20.42 compared to 20.28, p value = 0.04)
and have no gain in automation and production skills, whereas engineers
gain (20.05 compared to 0.70, p value = 0.00). This de-skilling effect in
operations skills is consistent with operators’ moderate shift from manual to
cognitive tasks noted above, which is also reflected in an increase in cogni-
tive skills and creativity for AM operators substantially larger than that for
engineers (0.94 compared to 0.01 with p value = 0.00, and 0.14 compared to
0.01 with p value = 0.38). Social skills and character differences between AM
and TM are small.15 These findings are robust to the use of alternative
measures, samples, and estimation methods and to whether we compare
AM to TM in general or to specific techniques. The upskilling effect of AM
that favors low-skill workers is in contrast with the bifurcated effect of com-
puterization in manufacturing and other parts of the economy, which
resulted in upskilling of high-skill workers and less skill gains or actual skill
loss for lower-skill workers (Ben-Ner and Urtasun 2013).

15In terms of OLA B, Figure OB.1, operators’ skill change is represented by line 3 for high-level and
reasoning skills, which is steeper than line 6, which represents high-level and reasoning skills change for
engineers. Operations skill change for operators is represented by line 1.
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The findings accord with our hypotheses, which we derived from a theo-
retical framework that emphasizes the implications for work of two features
of technology: product flexibility and process integration. Product flexibility
is reflected in the range of options for multiple parameters that define a
product: weight, geometry, strength, and so on. Such flexibility requires
greater high-level engineering skills of engineers, but has similar effects on
operations workers, technicians, and operators, who need to contend with
experimentation, evaluation of outcomes, and provision of feedback for
changes and improvement. The AM production process is much more inte-
grated than TM, as it is much shorter. This implies that an AM worker
handles the process from materials to the final product, whereas in TM,
workers handle only parts of the process, hence AM demands broader skills
than does TM. These considerations led to the hypotheses that AM jobs are
more complex and require greater skills, as compared to TM.

These effects may have broad implications for wages and work organiza-
tion. Greater job complexity and higher technical skills are likely to demand
higher wages, with a larger increase for low-skill workers. Complexity is an
important determinant of workplace organization, as it entails greater
worker decision-making autonomy, less monitoring, and more incentives
(Perrow 1972; Prendergast 2002; Ben-Ner, Kong, and Lluis 2012), leading
to more ‘‘holistic’’ or ‘‘high road’’ work organization (MacDuffie 1995;
Lindbeck and Snower 2000). These effects may be combined with those of
greater skills in engendering organizational change toward greater decision-
making autonomy (Caroli and Van Reenen 2001).

Our study has several limitations. Like the rest of the literature, our mea-
sure of demand for skills reflects mentions of skills in job postings, but this
does not necessarily imply equal importance. We partially addressed this
concern by comparing postings in the same occupations made by the same
plants, which are likely to reflect similar biases across multiple postings. In
the same vein, we did not assign weights or prices to individual skills to com-
pare the total value of skills in the two technologies. Another limitation of
this method is that job postings, especially in the summary form that we
used, do not capture the full richness of tasks and activities in the work-
place. Concepts such as interdependence are hard to measure through this
method and may only be understood through surveys of employers and
employees, detailed job descriptions, and case studies.

An important limitation of our study is the focus on individual jobs rather
than on the production process or value chain in its entirety. This
approach, which is the cornerstone of the literature, analyzes tasks and skills
associated with jobs. The production process entails tasks that complement
each other and that can be combined into jobs in diverse ways and require
different combinations of tasks. To fully understand the implications of vari-
ous technologies for work, it is necessary to analyze the entire production
processes, from end to end, to understand how technologies differ in terms
of division of labor and specialization. In this article, we characterized the
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tasks and skills of workers in different occupations; we analyzed within-plant
differences, but we did not examine the production process. Future
research on the implications of technology on work organization should
address the entire value chain and the parts that are housed in distinct
establishments.

Adoption of robotics is changing the role of workers and the content of
their tasks in all production technologies. In this article, we only touched
on this matter, finding that the use of robotics does not seem to significantly
change the task attributes and skill requirements in AM and in TM. A study
that focuses on production processes with and without robotics would
inform better about the roles, tasks, and skills of workers in the two types of
technology environments.

AM is employed in few plants, so our comparison necessarily evaluated a
disparate number of observations in the two technologies. In our robustness
tests, we analyzed service bureaus, which have more balanced numbers of
postings in AM and TM and obtained similar but less sharp differences in
task content and skill requirements. We also analyzed other samples and
subsamples of our analytical sample and found results similar to the main
results.

Important considerations remain to be studied. Our data do not contain
information about output; hence, we could not investigate whether AM is
labor saving, which is a major concern when considering the potential
labor displacement effect of new technologies.16 Another consideration is
whether AM changes the relative employment shares of different occupations.
Among non-managers, 65% of postings in TM during the eight-year sample
period were for engineers, whereas in AM the percentage was 73. This differ-
ence may reflect a less production-worker intensive process in AM, or a
higher-skill intensive pre-production process. These points are cardinal
concerns that should be addressed in future research.

16Felice, Lamperti, and Piscitello (2021) argued that the effect of AM on employment is positive and
found supportive evidence in connecting industry-level AM patent activity and employment. This view is
shared, for example, by the consulting firm A.T. Kearney (2018). Dixon, Hong, and Wu (2021) found
positive effects of robots on employment. Whether these findings are associated with increased demand
for products made by firms using new technologies, or these technologies are more labor intensive
despite automation, is an open question.

284 ILR REVIEW



Appendix

Figure A.1. Plant Level Means of Task Attributes (Share Measures), Hybrid AM-TM Plants,
by Occupation and Technology, 01/2014–01/2022

Notes: See notes to Table A.2, from which this figure is derived.

Figure A.2. Plant Level Means of Skill Requirements (Share Measures), Hybrid AM-TM
Plants, by Occupation and Technology, 01/2014–01/2022

Notes: See notes to Table A.3, from which this figure is derived.
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Table A.1. Keywords for Task Attributes and Skill Requirements

Task attributes

Complexity (source: authors, based on Spitz-Oener 2006 and Atalay et al. 2020)
Non-routine analytic: abstract, advanced, analy, complex, design, evaluat, flexib, interpret, research, sketch, synthes;
Non-routine manual: repair;
Routine cognitive: bookkeep, calcul, compar, copy, correct, data, measur, record;
Routine manual: assembl, control, drill, equip, feed, install, maintain, operat, tool.
Interdependence (source: authors, based in part on Spitz-Oener 2006 and Atalay et al. 2020’s keywords for non-routine

interactive)
Reciprocal: advis, agree, assist, bargain, coach, collaborat, conflict, consult, coordinat, counsel, feedback, group,
mentor, negotiat, persua, social, teach, team, train, trust;
Sequential: accuracy, appraisal, assurance, authority, command, compliance, controller, direct, kpi, leader, metrics,
monitor, protocol, report, routin, rule, standard, supervis, surveillance.

Skill requirements

Engineering (source: BGT families and clusters, and some keywords)
Development, design, materials.
Operations (source: BGT families and clusters)
Inventory, tooling, maintenance, automation, production.
Support (source: Deming and Noray 2020)
Administrative, management, finance, business, machine learning, software, data, office, technical support.
Reasoning (source: Deming and Kahn 2018 in the version used by Atalay et al. 2020)
Cognitive: analytical, cognitive, critical thinking, math, problem solving, research, statistics; Creativity: creativ.
People (source: Deming and Noray 2020)
Social: collaboration, communication, listening, negotiation, persua, present, social, team; Character: detail-oriented,
energetic, goal setting, initiative, meeting deadlines, multi-tasking, organizational skills, planning, positive disposition,
prioritizing tasks, self-motivation, self-starter, time management.

Sources: Listed in parentheses.
Notes: We use stems for words when the source does so. For more details, see OLA A, Table OA.1. BGT,
Burning Glass Technologies.

Table A.2. Summary Statistics of Task Attributes (Share Measures), Hybrid AM-TM
Plants Job Postings, 01/2014–01/2022

Task attributes

Manager Engineer Technician Operator

AM TM AM TM AM TM AM TM

Complexity
Non-routine analytic 7.19*** 5.19 15.36*** 11.52 6.17* 5.28 4.26*** 2.77

(3.00) (5.88) (4.92) (8.85) (1.76) (5.74) (1.23) (4.22)
Non-routine manual 0.13*** 0.40 0.68 0.65 1.11*** 3.02 2.34*** 3.40

(0.10) (1.24) (0.63) (1.55) (0.48) (3.49) (0.72) (4.47)
Routine cognitive 0.87 0.86 0.81*** 1.33 2.68 2.42 0.83*** 1.82

(0.95) (2.21) (0.82) (2.57) (0.78) (3.29) (0.37) (3.21)
Routine manual 4.12*** 2.34 3.66* 3.29 6.43 7.25 6.98*** 9.01

(1.64) (3.66) (2.43) (4.25) (1.65) (6.24) (2.21) (8.46)
Interdependence
Reciprocal 4.67 4.65 2.87 3.03 4.25*** 2.92 4.98*** 3.44

(2.36) (4.98) (1.94) (3.94) (0.89) (4.08) (1.16) (4.64)
Sequential 3.82*** 5.06 1.90*** 3.32 4.39*** 2.81 4.68** 3.78

(2.52) (5.46) (1.43) (4.21) (0.73) (3.50) (1.32) (5.18)
Number of job

postings
2,437 233,820 6,302 205,328 1,009 29,365 1,348 79,646

Number of plants 391 688 588 669 262 607 309 628

Notes: Measures as shares (count of matched terms)/(total count of terms) in a posting multiplied by
100. Means of plant level means and standard deviations (in parentheses). The significance is from two-
tailed unequal variances t-tests of mean differences. The sample is sample C (Hybrid AM-TM plants) in
Table 1. For variable definitions, see text.
***p . 0.01; **p \ 0.05; *p \ 0.1.
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