Figure 1.1 Proportion of Twenty-Six- to Twenty-Eight-Year-Olds with a Bachelor's Degree, Birth Cohorts 1912 to 1984, by Birth Year

Source: Authors' compilation based on IPUMS census data, 1940 to 2000 (Ruggles et al. 2010); American Community Survey (U.S. Census Bureau 2010).

Source: From "Women now a majority of tertiary level students in most countries," UNESCO Institute for Statistics, pp. 78-79 in World Atlas of Gender Equality in Education © UNESCO 2012. Reprinted with permission.

Figure 2.2 Women's Share of Tertiary Enrollment in OECD Countries, 1990, 2008, and 2020 (Projected)

Number of Women Enrolled as Percentage of All Students
$\square 1990 \square 2008 \quad \square 2020$

Source: Authors' compilation based on UNESCO (2009); Vincent-Lancrin (2008).

Figure 2.3 Ranking of OECD Countries by Rate of Tertiary Completion

Figure 2.4 Percentage of Males and Females Who Obtained a Tertiary Type A Degree, Birth Cohorts 1945 to 1954 and 1975 to 1984, 2009

Source: Authors' compilation based on data from OECD (2011).

Figure 2.5 Proportion of Twenty-Six- to Twenty-Eight-Year-Olds with a Bachelor's Degree, Birth Cohorts 1912 to 1984, by Birth Year

Source: Authors' compilation based on IPUMS census data, 1940 to 2000 (Ruggles et al. 2010); American Community Survey (U.S. Census Bureau 2010).

Figure 2.6 Women's Share of Master's, Doctoral, and Professional Degrees Awarded, 1969-1970 to 2009-2010

Source: Authors' compilation based on data from the National Center for Education Statistics (Snyder and Dillow 2012).

Figure 2.7 Proportion of Twenty-Six- to Twenty-Eight-Year-Olds with a Bachelor's Degree or Higher, by Gender and Race for Blacks and Non-Hispanic Whites, Birth Cohorts 1912 to 1984, by Birth Year

Source: Authors' compilation based on IPUMS census data, 1940 to 2000 (Ruggles et al. 2010); American Community Survey (U.S. Census Bureau 2010).

Figure 2.8 Proportion of Twenty-Six- to Twenty-Eight-Year-Olds with a Bachelor's Degree or Higher by Gender and Hispanic, Asian, and Native American Status, Birth Cohorts 1942 to 1984, by Birth Year

[^0]Figure 2.9 Gender Segregation in Fields of Study, 1966 to 2009

Source: Mann and DiPrete (2012). Data are from National Science Foundation, WebCASPAR database.

Figure 2.10 White Versus Black Odds of Completing a Bachelor's Degree by Age Twenty-Six to Twenty-Eight, 1940 to 2010

Source: Authors' compilation based on IPUMS census data, 1940 to 2000 (Ruggles et al. 2010); American Community Survey (U.S. Census Bureau 2010).

Figure 2.11 Probability of Blacks Age Twenty-Six to Twenty-Eight Attaining Some College, by Birth Year

Figure 2.12 Probability of Blacks Age Twenty-Six to Twenty-Eight Attaining a Bachelor's Degree Given Some College, by Birth Year

Source: McDaniel et al. (2011). Data are from IPUMS (Ruggles et al. 2010).

Figure 2.13 Probability of Whites Age Twenty-Six to Twenty-Eight Attaining Some College, by Birth Year

Source: McDaniel et al. (2011). Data are from IPUMS (Ruggles et al. 2010).

Figure 2.14 Probability of Whites Age Twenty-Six to Twenty-Eight Attaining a Bachelor's Degree Given Some College, by Birth Year

Source: McDaniel et al. (2011). Data are from IPUMS (Ruggles et al. 2010).

Table 2.1 Female/Male Odds Ratios for Completing Four-Year College by Age, Year, and Race, 1940 to 2000

	Census Year/Birth Cohort						
	$1940 /$	$1950 /$	$1960 /$	$1970 /$	$1980 /$	$1990 /$	$1996 /$
	1918	1928	1938	1948	1958	1968	1974
Whites							
Twenty-two	1.02	1.58	0.82	0.86	1.19	1.41	1.56
Twenty-three	0.85	1.18	0.71	0.81	1.08	1.38	1.57
Twenty-four	0.76	0.75	0.69	0.81	0.98	1.20	1.42
Twenty-five	0.65	0.57	0.59	0.77	0.99	1.21	1.39
Twenty-six	0.58	0.51	0.58	0.74	0.95	1.15	1.24
Twenty-seven	0.58	0.51	0.55	0.70	0.91	1.15	1.29^{a}
Twenty-eight	0.63	0.48	0.52	0.69	0.89	1.12	1.25^{a}
Blacks							
Twenty-two	1.70	3.15	2.63	1.41	1.79	1.34	1.67
Twenty-three	1.49	2.33	1.72	1.35	1.61	1.57	1.65
Twenty-four	1.70	1.22	1.41	1.56	1.34	1.41	1.43
Twenty-five	1.54	1.47	1.53	1.30	1.27	1.48	1.59
Twenty-six	1.14	0.92	1.12	1.17	1.24	1.40	1.39
Twenty-seven	1.55	1.66	1.36	1.32	1.27	1.42	$1.61^{\text {a }}$
Twenty-eight	1.54	1.21	0.95	0.95	1.31	1.53	1.47^{a}

Source: Authors' compilation based on IPUMS 1940-2000 (Ruggles et al. 2010).
${ }^{\text {a }}$ Computed based on extrapolating 1990 to 2000 results into the future.

Figure 3.1 Proportion of Twenty-Eight- to Thirty-Two-Year-Olds with a Bachelor's Degree Who Are Employed, by Race, Gender, and Census Year

Figure 3.2 The Effect of a Bachelor's Degree on Marriages Among Whites, 1960 to 2000

Source: DiPrete and Buchmann (2006).
Note: $\operatorname{Pr}(\mathrm{Y} \mid \mathrm{BA})-\operatorname{Pr}(\mathrm{Y} \mid \mathrm{HS})=$ Probability of Marriage, Given BA or More Minus Probability of Marriage, Given High School Completion.

Figure 3.3 The Effect of a Bachelor's Degree on Household Standard of Living Among Whites, 1960 to 2000

Source: DiPrete and Buchmann (2006).
Note: Log $\mathrm{Y}(\mathrm{BA})-\log \mathrm{Y}(\mathrm{HS})=\log$ Household Standard of Living Given BA or More Minus Log Household Standard of Living Given High School Completion.

Figure 3.4 The Effect of a Bachelor's Degree on Whites' Probability of Not Being Income-Deprived, 1960 to 2000

Source: DiPrete and Buchmann (2006).
Note: $\operatorname{Pr}(\mathrm{Y} \mid \mathrm{BA})-\operatorname{Pr}(\mathrm{Y} \mid \mathrm{HS})=$ Probability of not being income-deprived given BA or more minus probability of not being income-deprived given high school completion.

Table 3.1 Percentage of Employed Twenty-Eight- to Thirty-Two-Year-Olds with a Bachelor's Degree, in Various Occupations, 1940 to 2000

	1940	1950	1960	1970	1980	1990	2000
Black women							
\quad Doctors, dentists, or lawyers	0.0%	0.0%	0.8%	0.6%	2.0%	3.1%	3.3%
Engineers	0.0	0.0	0.0	0.0	0.9	1.5	2.1
Managers and other proprietors	0.0	0.0	0.8	0.6	5.6	9.2	10.3
Teachers	56.9	65.1	61.2	64.5	35.1	15.7	14.8
Nurses	3.5	0.0	3.7	3.3	3.6	6.5	5.1
Other	39.7	34.9	33.5	31.1	52.9	64.0	64.4
White women							
\quad Doctors, dentists, or lawyers	0.9	2.2	1.5	1.1	2.4	4.1	3.8
Engineers	0.2	0.0	0.4	0.3	0.7	2.0	2.0
Managers and other proprietors	1.5	1.8	2.1	2.1	6.6	11.3	11.4
Teachers	53.3	33.9	45.4	50.7	33.9	17.5	19.5
Nurses	2.7	12.1	5.3	3.9	5.6	7.5	5.3
Other	41.4	50.0	45.2	41.9	50.8	57.6	58.1
Black men							
\quad Doctors, dentists, or lawyers	5.1	5.7	5.0	2.2	4.3	4.3	3.5
Engineers	0.0	0.0	2.5	4.3	4.7	4.8	4.8
Managers and other proprietors	2.6	5.7	2.5	5.2	8.9	12.2	13.8
Teachers	35.9	28.6	31.5	29.2	12.4	7.6	10.3
Nurses	0.0	0.0	0.5	0.3	0.6	0.5	1.7
Other	56.4	60.0	58.0	58.8	69.1	70.6	65.8
White men							
Doctors, dentists, or lawyers	15.7	10.4	8.4	6.9	7.9	6.8	5.4
Engineers	7.5	11.1	12.5	11.3	6.8	9.1	1.7
Managers and other proprietors	9.4	11.6	11.3	10.5	15.4	17.7	17.6
Teachers	11.4	7.2	11.1	12.9	9.7	5.7	7.3
Nurses	0.2	0.1	0.1	0.3	0.7	0.7	0.9
Other	55.9	59.7	56.7	58.2	59.5	60.0	61.2

[^1]Figure 4.1 Gender Differences in Math and Reading Test Scores

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Figure 4.2 Mean Grade Point Average for High School Seniors, 1972 to 2004

Source: Authors' compilation based on data from National Longitudinal Survey of 1972, High School \& Beyond, National Educational Longitudinal Study and Educational Longitudinal Study (National Center for Education Statistics 1994, 1995, 2003, 2007).

Figure 4.3 Percentage of Female and Male High School Students Completing Advanced Courses, 1982 to 2004

Source: Authors' compilation based on data from High School \& Beyond, National Educational Longitudinal Study, and Educational Longitudinal Study (National Center for Education Statistics 1995, 2003, 2007).
Note: Data are weighted and pertain to high school seniors who subsequently graduated from high school.

Figure 4.4 Mean High School Grade Point Average, by Advanced CourseTaking and Gender, 1982 to 2004

Source: Authors' compilation based on data from National Longitudinal Survey of 1972, High School \& Beyond, National Educational Longitudinal Study and Educational Longitudinal Study (National Center for Education Statistics 1994, 1995, 2003, 2007.
Note: Data are weighted and pertain to high school seniors who subsequently graduated from high school. Advanced courses include algebra 2 and chemistry. All gender differences are significant at the 0.01 level.

Figure 4.5 Gender Distribution Across ASVAB Quintiles, 1997

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.6 Proportion Who Complete College, by ASVAB Score

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.7 Proportion Who Complete College, by Grades in Eighth Grade

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.8 Proportion Who Complete College by Grades, in High School

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.9 Distribution of Girls and Boys, by Self-Reported Grades in Eighth Grade

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.10 Distribution of Girls and Boys, by Self-Reported Grades in High School

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Figure 4.11 Expected Proportion Completing College if Males Have the Same Grades in Eighth Grade as Females

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Table 4.1 Route Through the Educational System by Ages Twenty-Five and Twenty-Six

	HS Grads Only		All Students	
	Males	Females	Males	Females
No high school diploma	n / a	n / a	9\%	8\%
High school diploma, but no college	24\%	21\%	22\%	19\%
Two-year college only	24	27	22	25
Two-year plus four-year college				
BA	9	11	8	10
No BA	14	12	13	11
Four-year college only				
BA	20	22	18	20
No BA	9	7	8	6

Source: Authors' compilation of data from Buchmann and DiPrete (2006).

Table 4.2 Breaking Down the Gender Gap in Terms of Pathways and Performance

			Men if They Have Women's Grades	Fraction of Total Gap
Probability of . .	Men	Women		
Any two-year college	47%	50%		13%
Any four-year college, conditional on some two-year college	48	46		6
BA, given both four-year and two-year college	39	47	(46)	46
Only four-year college BA, given only four-year college	29	29		49

Source: Authors' compilation of data from Buchmann and DiPrete (2006).

Figure 5.1 Proportion of Girls and Boys in Each Quintile of Grade-Specifc Time Spent on Homework, NLSY97

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).

Table 5.1 Social and Behavioral Skills, Kindergarten Through Fifth Grade

	Social and Behavioral Skills Factor ${ }^{\mathrm{a}}$					
			Not			
	Boys	Girls	Poor	Poor	Black	White
Beginning of kindergarten	-0.203	0.210	-0.241	0.063	-0.249	0.083
End of kindergarten	-0.199	0.205	-0.247	0.065	-0.291	0.091
First grade	-0.193	0.199	-0.203	0.055	-0.266	0.075
Third grade	-0.203	0.209	-0.281	0.082	-0.334	0.077
Fifth grade	-0.247	0.255	-0.276	0.076	-0.323	0.058

Source: Authors' compilation of data from DiPrete and Jennings (2012).
${ }^{a}$ Measured in standard deviation units.

Table 5.2	Estimated Effects of the Social and Behavioral Skills Factor and the Approaches to Learning Factor on Reading and Math Test Scores	
School Year	Reading	Math
End of kindergarten		
Social and behavioral skills factor	0.044^{*}	$0.106^{* * *}$
Approaches to learning factor	0.038	$0.099^{* * *}$
End of first grade		
\quad Social and behavioral skills factor	0.057	$0.106^{* *}$
Approaches to learning factor	$0.174^{* *}$	$0.228^{* * *}$
End of third grade		
Social and behavioral skills factor	$0.119^{* * *}$	0.047
Approaches to learning factor	0.107^{*}	0.135^{*}
End of fifth grade		
Social and behavioral skills factor	0.026^{*}	$0.032^{* *}$
Approaches to learning factor	0.043	0.094^{*}

Source: Authors' compilation of data from DiPrete and Jennings (2012).

* $p<0.05 ;{ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$.

Table 5.3 Proportion Retained (Conditional on Not Having Previously Been Retained), by Grade and Gender

	Male	Female
Kindergarten	$0.054(0.008)$	$0.024(0.006)$
First grade	$0.088(0.011)$	$0.065(0.008)$
Third grade	$0.035(0.005)$	$0.043(0.013)$

Source: Authors' compilation of data from DiPrete and Jennings (2012).

Table 5.4 Mean Differences Between Girls and Boys on Fifth-Grade Academic Outcomes and Third-Grade Social and Behavioral Outcomes

Variable	Females	Males	Male- Female
Fifth-grade math test scores	-0.118 (0.041)	0.114 (0.036)	0.232
Fifth-grade reading test scores	0.063 (0.039)	$-0.061 \quad(0.038)$	-0.124
Fifth-grade teacher math evaluations	0.002 (0.035)	-0.002 (0.032)	-0.004
Fifth-grade teacher reading evaluations	$0.160 \quad(0.036)$	$-0.115 \quad(0.033)$	-0.275
Third-grade social and behavioral skills factor	0.209 (0.034)	$-0.203 \quad(0.030)$	-0.412
Third-grade approaches to learning factor	0.133 (0.031)	-0.129 (0.033)	-0.262
Fifth-grade predicted math evaluation			
Males with own means on social and behavioral variables	0.104	0.106	0.002
Males with female means on social and behavioral variables		0.243	0.139
Fifth-grade predicted reading evaluation			
Males with own means on social and behavioral variables	0.242	-0.052	-0.294
Males with female means on social and behavioral variables		0.129	-0.113

Source: DiPrete and Jennings (2012)
Note: Standard errors are in parentheses.

Table 5.5 Eighth-Grade Student Reports on the Importance of Grades to Them (Proportions), by Their Own Grades, 2007

	Males			Females	
	Mostly A's	Other		Mostly A's	Other
Very important	0.60	0.43		0.71	0.51
Important	0.34	0.44		0.26	0.39
Somewhat important	0.06	0.11		0.02	0.09
Not important	0.01	0.02		0.00	0.01

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Table 5.6 Proportion of Eighth-Grade Students Reporting That They Fit in at School and Enjoy School, by Gender, 2007

	Fit In			Close to Teachers			Enjoy School	
	Females	Males		Females	Males		Females	Males
Never	0.02	0.02		0.05	0.10		0.04	0.07
Sometimes	0.13	0.12		0.39	0.42		0.29	0.34
Often	0.33	0.36		0.37	0.34		0.42	0.37
Always	0.53	0.50		0.19	0.14		0.25	0.22

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Figure 6.1 Distribution of Sister-Brother Differences on the ASVAB Across Families

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).
Note: Shaded area is the part of the distribution where brothers outperformed sisters.

Figure 6.2 Distribution of Sister-Brother Differences on Self-Reported GPA Across Families

Source: Authors' compilation based on National Longitudinal Study of the High School Class of 1997 data (U.S. Department of Labor, Bureau of Labor Statistics 2012).
Note: Shaded area is the part of the distribution where brothers outperformed sisters.

Figure 6.3 Most Valued Attribute, by Gender and Responding Parent's Education

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Figure 6.4 Proportion Reporting That Grades Were "Very Important" and That They "Always" Enjoyed School or Were "Always" Close to Teachers, by Gender and Father's Education

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Figure 6.5 Proportion of Eighth-Graders Who Said That Good Grades Were "Very Important," by Father's Education, Academic Performance, and Participation in the Arts

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).
Note: "Arts" is the response to "How often do you spend time taking music, art, foreign language, or dance classes outside of school?" with responses "rarely or never," "less than once a week," "once or twice a week," or "every day or nearly every day." "If all males had female grades and at least some arts" is the predicted response to the "good grades" question under the hypothetical that boys get A's in the same proportion as girls and that boys responded at least "less than once a week" to this question.

Figure 6.6 Proportion of Eighth-Graders Who Expressed Strong Integration with School, by Father's Education, Academic Performance, and Participation in the Arts

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).
Note: Strong integration is operationalized as "often" or "always" enjoying being at school and "often" or "always" feeling close to teachers at your school. "If all males had female grades and at least some arts" is the predicted response to the "good grades" question under the hypothetical that boys get A's in the same proportion as girls and that boys responded at least "less than once a week" to this question.

Figure 6.7 Proportion of Eighth-Graders Who Said That Good Grades Were "Very Important," by Race and Gender

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).
Note: "Arts" is the response to "How often do you spend time taking music, art, foreign language, or dance classes outside of school?" with responses "rarely or never," "less than once a week," "once or twice a week," or "every day or nearly every day."

Figure 6.8 Proportion of Eighth-Graders Who Expressed Strong Integration with School, by Race

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).
Note: Strong integration is operationalized as "often" or "always" enjoying being at school and "often" or "always" feeling close to teachers at school.

Table 6.1 Rates of U.S. College Completion for Males and Females, Age Twenty-Five to Thirty-Four, by Parents' Education, Presence of Father, and Birth Cohort

[^2]Table 6.2 Effects of Parental Characteristics and Family Structure on Math and Reading Test Scores

	Math		Reading	
	OLS	Fixed Effects	OLS	Fixed Effects
Average family income (logged)	$1.62^{* * *}$		$1.30^{* * *}$	
Mother's age at childbirth	$0.18^{* * *}$		-0.055	
Female	0.030	-0.10	1.58**	$1.70^{* * *}$
Black	-6.70 ***		$-5.54 * * *$	
Hispanic	$-4.44^{* * *}$		-2.66 ***	
Mother high school (less than high school is baseline)	$2.64 * * *$		3.40 ***	
Mother some college	4.27***		5.01***	
Mother BA or higher	8.04***		7.12***	
Mother BA or higher* female	-0.92	-0.22	0.021	0.42
Live-in nonspouse	-5.6*		-5.38	
Live-in spouse	-4.8		-4.41	
Father/partner missing on education	0.43		1.102	
Father/partner less than high school	3.26		2.90	
Father/partner high school	4.68		4.31	
Father/partner some college	6.33*		5.13	
Father/partner BA or higher	8.78 ***		7.99*	
Father/partner BA or higher* female	-0.91	-1.76*	-0.70	-1.70*
Child lives with biological father	0.0337	0.065	1.31	-0.136
Lives with father* female	-0.581	-0.89	-0.24	-0.19
N	21,982	19,869	21,017	18,967

Source: DiPrete and McDaniel (2011). Data are from NLSY79 (U.S. Census Bureau 2010).

* $p<.05 ;{ }^{* *} p<.01$; *** $p<.001$

Table 6.3 Effects of Parental Characteristics and Family Structure on Armed Services Vocational Aptitude Battery

	OLS	Random Effects
Female	$2.8^{* * *}$	$3.1^{* *}$
Biological father's education		
\quad Less than high school	$-4.7^{* * *}$	-4.2
High school	$3.2^{* *}$	$5.4^{* *}$
Some college	$8.8^{* * *}$	$11.1^{* * *}$
BA or higher	$16.7^{* * *}$	$22.5^{* * *}$
Biological mother's education		
\quad Less than high school	$-9.5^{* * *}$	$-9.2^{* *}$
High school	1.2	-0.91
Some college	$4.9^{* *}$	2.9
\quad BA or higher	$13.7^{* * *}$	8.1^{*}
Female* father has BA or higher	-2.7	-6.1^{*}
Hispanic	$9.0^{* * *}$	$13.5^{* * *}$
Nonblack/non-Hispanic	$18.5^{* * *}$	$22.5^{* * *}$
Constant	26.7	
N	7,005	1,705

Source: DiPrete and McDaniel (2011). Data are from NLSY97 (U.S. Department of Labor, Bureau of Labor Statistics 2012).
${ }^{\mathrm{a}}$ Missing is the reference category.

* $p<.05 ;{ }^{* *} p<.01$; *** $p<.001$

Table 6.4 Effects of Parental Characteristics and Family Structure on SelfReported Eighth-Grade Grades

	OLS		
	Model 1	Model 2	Random Effects
Female	$0.75^{* * *}$	$0.72^{* * *}$	$0.60^{* * *}$
Biological father's education ${ }^{\text {a }}$			
Less than high school	$-0.28^{* *}$	-0.15	-0.066
High school	0.18^{*}	0.07	0.25^{*}
Some college	$0.49^{* * *}$	0.24^{*}	$0.46^{* * *}$
BA or higher	$1.1^{* * *}$	$0.56^{* * *}$	$0.93^{* * *}$
Biological mother's education ${ }^{\text {a }}$			
\quad Less than high school	$-0.49^{* * *}$	-0.17	-0.24
High school	-0.18	0.14	-0.10
Some college	-0.01	-0.19	0.06
\quad BA or higher	$0.39^{* *}$	-0.13	0.32
Female father has BA or higher	$-0.30^{* *}$	-0.20	-0.25
Hispanic	$0.41^{* * *}$	0.02	$0.34^{* *}$
Nonblack/non-Hispanic	$0.46^{* * *}$	-0.17^{*}	$0.57^{* * *}$
Constant	4.6	3.7	2.7
ASVAB—spline 1		$0.03^{* * *}$	
ASVAB—spline 2		-0.015	
ASVAB—spline 3	0.853	5,720	2,093
N			

Source: DiPrete and McDaniel (2011). Data are from NLSY97 (U.S. Department of Labor, Bureau of Labor Statistics 2012).
${ }^{a}$ Missing is the reference category.
${ }^{*} p<.05 ;{ }^{* *} p<.01 ;{ }^{* * *} p<.001$

Table 6.5 Behavior Problems in Children

	OLS	Fixed Effects
Average family income (logged)	$-1.77^{* * *}$	
Mother's age at childbirth	$0.35^{* * *}$	
Female	$-3.35^{* * *}$	$-3.8^{* * *}$
Black	-1.21^{*}	
Hispanic	$-1.68^{* *}$	
Mother high school (less than high school	$-1.85^{* *}$	
is baseline)		
Mother some college	-1.81^{*}	
Mother BA or higher	$-3.66^{* * *}$	
Mother BA or higher* female	1.17	1.76^{*}
Live-in nonspouse	-8.77^{*}	
Live-in spouse	-9.84^{*}	
Father / partner missing on education	8.51^{*}	
Father/partner less than high school	$10.5^{* *}$	
Father/partner high school	8.58^{*}	
Father/partner some college	8.38^{*}	
Father/partner BA or higher	7.42	
Father/partner BA or higher* female	2.26^{*}	0.005
Child lives with biological father	$-2.17^{* *}$	-1.319^{*}
Lives with father* female	0.7	1.29^{*}
N	22,582	20,349

Source: DiPrete and McDaniel (2011). Data are from NLSY79 (U.S. Department of Labor, Bureau of Labor Statistics 2012).
Note: A higher score indicates greater behavioral problems.
${ }^{*} p<.05 ;{ }^{* *} p<.01$; *** $p<.001$.

Table 6.6 Parental Values for Children: "If your child could be only one of the following in high school, which would be most important to you?"

A brilliant student	63%	59%
A leader in school activities	31	35
An athletic star	5	4
The most popular	2	1

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).

Table 6.7 Proportion of Eighth-Graders Who Work on High-Culture Skills, by Gender and Father's Education

| | Less Than BA | | | BA or Higher | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Females | Males | | Females | Males |
| Rarely /never | 0.66 | 0.80 | | 0.53 | 0.71 |
| Less than once a week | 0.09 | 0.08 | | 0.10 | 0.06 |
| Once or twice a week | 0.16 | 0.06 | | 0.23 | 0.18 |
| Almost or every day | 0.09 | 0.05 | | 0.14 | 0.05 |

Source: Authors' compilation based on ECLS-K data (National Center for Education Statistics 2009).
Note: Father's education is measured as the education of the biological or household father as of first grade. High-culture skills refers to taking music, art, foreign language, or dance classes outside of school in eighth grade, as measured in the ECLS-K.

Figure 7.1 Empirical Bayes Predictions for Average School Performance and Gender Gap in Education

Figure 7.1 (continued)

Table 7.1 Effect of Socioeconomic School/Class Composition for Boys and Girls, in Standard Deviations

	Female		SES Composition		SES Composition x Female	
	Coefficient	(Standard Error)	Coefficient	(Standard Error)	Coefficient	(Standard Error)
Multilevel model estimates (PISA-I-Plus 2003)	0.143	(0.11)	0.303***	(0.05)	-0.099*	(0.04)
Fixed effects estimates (ELEMENT)	$0.120^{* *}$	(0.03)	0.178***	(0.06)	-0.057*	(0.03)
Fixed effects estimates (PISA-I-Plus 2003)	0.196***	(0.03)	0.237***	(0.03)	-0.052*	(0.02)

Source: Authors' compilation based on Legewie and DiPrete (2012b).
Note: Standard errors in parentheses.
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

Figure 8.1 Bachelor's Degrees in Science and Engineering Awarded to Men and Women

__ Female Science Majors $\quad-\quad$ - Male Science Majors
Female Proportion

Source: Mann and DiPrete (2012), based on CASPAR data (National Science Foundation 2012).

Figure 8.1 (continued)

_— Female Science Majors ——— Male Science Majors
Female Proportion

Figure 8.2 Advanced Degrees Awarded to Women

Source: Authors' compilation based on National Center for Education Statistics (2007).
Note: The Y axis is on a log scale.

Figure 8.3 Proportion of Male Advanced Degree Recipients in Indicated Specialty

Source: Authors' compilation based on Snyder and Dillow (2007).

Figure 8.4 Proportion of Female Advanced Degree Recipients in Indicated Specialty

[^3]Figure 8.5 Proportion (Standardized) of Male Advanced Degree Recipients in the Indicated Specialty

Source: Authors' compilation based on Snyder and Dillow (2007).
Notes: Education, social science, humanities, and other health excluded. Distribution of male and female degrees fixed at 2005-2006 levels. Proportions across all specialties sum to unity.

Figure 8.6 Proportion (Standardized) of Female Advanced Degree Recipients in the Indicated Specialty

Source: Authors' compilation based on Snyder and Dillow (2007).
Notes: Education, social science, humanities, and other health excluded. Distribution of male and female degrees fixed at 2005-2006 levels. Proportions across all specialties sum to unity.

Table 8.1 Logistic Regression Coefficients for College Completion

	Model 1	Model 2	Model 3	Model 4
Main effect of female				
Whites and blacks	$0.479^{* *}$	$0.335^{* *}$	0.025	-0.005
Whites only	$0.419^{* *}$	0.295^{*}	-0.046	-0.075
Blacks only	$1.105^{* *}$	0.507	0.319	0.303
Included covariates				
Social background	Yes	Yes	Yes	Yes
College attributes		Yes	Yes	Yes
College GPA			Yes	Yes
College GPA \times major				Yes

Source: Authors' compilation based on Buchmann and DiPrete (2006).
Notes: Social background covariates include mother some college, father some college, father present; college attribute covariates include college type, selectivity, and major. Data are from NELS, 1988 to 2000 (National Center for Education Statistics 2003).

* $p \leq 0.05 ;{ }^{* *} p \leq 0.01$ (two-tailed tests)

Figure A. 1 Number of Master's Degrees Conferred by Gender, 1969-1970 to 2009-2010

Source: Authors' compilation based on Snyder and Dillow (2012).

Figure A. 2 Number of Doctoral and Professional Degrees Conferred by Gender, 1969-1970 to 2009-2010

Source: Authors' compilation based on Snyder and Dillow (2012).

Figure A. 3 The Effect of a Bachelor's Degree on Earnings for Thirty- to Thirty-Four-Year-Old Whites Working Full-Time/Full-Year, 1960 to 2000

Source: DiPrete and Buchmann (2006).
Note: $\log \mathrm{Y}(\mathrm{BA})-\log \mathrm{Y}(\mathrm{HS})=\log$ earnings given BA or more minus Log earnings given high school completion.

Figure A. 4 Female/Male Odds Ratio of Bachelor's Degree Completion for Blacks Age Twenty-Five to Twenty-Eight, by Birth Year

Source: McDaniel et al. (2011).
Note: Values are mean and median smoothed.

Figure A. 5 Trends in Male-Female NAEP Reading Scores, Age Nine, 1971 to 2008

Source: Rampey et al. (2009).
${ }^{\text {a }}$ Significantly different $(p<0.05)$ from 2008.

Figure A. 6 Trends in Male-Female NAEP Reading Scores, Ages Thirteen and Seventeen, 1971 to 2008

Source: Rampey et al. (2009).
Note: Score gaps are calculated based on differences between unrounded average scores.
${ }^{\text {a }}$ Significantly different $(p<0.05)$ from 2008.

Figure A. 7 Trends in Male-Female NAEP Math Scores, Age Nine, 1973 to 2008

- Revised assessment format -..-. Extrapolated data
----. Original assessment format

Source: Rampey et al. (2009).
Notes: Data for the years 1973 and 1978 are extrapolated. Top line indicates female scores for all years except for the years 1990-2004, when male scores are indicated by the top line. ${ }^{\text {a Significantly }}$ different $(p<0.05$) from 2008.
${ }^{\mathrm{b}}$ Rounds to zero.

Figure A. 8 Trends in Male and Female NAEP Math Scores, Ages Thirteen and Seventeen

Source: Rampey et al. (2009).
Note: Score gaps are calculated based on differences between unrounded average scores.
${ }^{\text {a Significantly different }(p<0.05) \text { from } 2008 . ~}$
${ }^{\mathrm{b}}$ Rounds to zero.

Figure A. 9 Course-Taking in High School for High School Seniors, 1972 to 2004

Source; Authors' compilation based on National Longitudinal Study of the High School Class of 1972, High School \& Beyond, National Educational Longitudinal Study, and Educational Longitudinal Study (National Center for Education Statistics 1994, 1995, 2003, 2007). Data are weighted and pertain to high school seniors who subsequently graduated from high school. Data from NLS72 are from self-reports. Data from HSB, NELS, and ELS are from transcripts.

Figure A. 10 Mean High School Grade Point Average by Race, 1972 to 2004

[^4]Figure A. 11 Percentage of All Master's and Doctoral Level Degree Recipients Who Are Female, 1970-1971 to 2005-2006

Source: Authors' compilation based on Snyder and Dillow (2007).

Table A. 1 Proportion Completing Four-Year College, by Age, Gender, Race, and Census Year, 1940 to 2007

	Age		1940		1950		1960	
			Male	Female	Male	Female	Male	Female
White	Twenty-two	\%	0.0423	0.0433	0.0446	0.0685	0.0867	0.0723
		N	10,125	10,339	2,980	3,166	9,016	9,106
	Twenty-three	\%	0.0611	0.0496	0.0650	0.0820	0.1272	0.0914
		N	10,036	10,178	3,014	3,184	8,797	8,868
	Twenty-four	\%	0.0671	0.0510	0.0868	0.0690	0.1347	0.0927
		N	10,058	10,208	3,054	3,216	8,756	9,098
	Twenty-five	\%	0.0739	0.0516	0.0957	0.0597	0.1448	0.0822
		N	10,091	10,218	3,135	3,384	8,975	9,336
	Twenty-six	\%	0.0761	0.0508	0.1115	0.0602	0.1511	0.0830
		N	9,739	10,155	3,068	3,389	8,505	8,842
	Twenty-seven	\%	0.0845	0.0528	0.1052	0.0617	0.1627	0.0836
		N	9,612	9,681	3,070	3,404	8,933	9,146
	Twenty-eight	\%	0.0773	0.0535	0.1044	0.0668	0.1731	0.0819
		N	9,569	9,819	3,171	3,475	8,972	9,361
Black	Twenty-two	\%	0.0118	0.0199	0.0085	0.0261	0.0101	0.0263
		N	1,136	1,344	355	421	1,186	1,259
	Twenty-three	\%	0.0059	0.0073	0.0144	0.0344	0.0264	0.0468
		N	1,079	1,296	347	407	1,098	1,219
	Twenty-four	\%	0.0137	0.0258	0.0229	0.0270	0.0307	0.0401
		N	1,092	1,292	349	408	1,106	1,322
	Twenty-five	\%	0.0077	0.0131	0.0144	0.0245	0.0284	0.0458
		N	1,179	1,340	347	449	1,089	1,288
	Twenty-six	\%	0.0134	0.0211	0.0279	0.0230	0.0379	0.0386
		N	1,022	1,304	358	434	1,057	1,217
	Twenty-seven	\%	0.0162	0.0121	0.0108	0.0293	0.0392	0.0523
		N	1,085	1,171	371	409	1,149	1,337
	Twenty-eight	\%	0.0105	0.0165	0.0207	0.0313	0.0426	0.0470
		N	1,080	1,322	384	416	1,009	1,296

Source: Authors' compilation based on IPUMS census data, 1940 to 2000 (Ruggles et al. 2010); American Community Survey, 2005 to 2007 (U.S. Census Bureau 2010).
Note: Sample sizes for 1950 are much smaller than other years owing to the sampling frame (uses sample-line, not universal frame, and has been weighted accordingly).

1970		1980		1990		2000		2005-2007	
Male	Female								
0.1451	0.1276	0.0990	0.1158	0.1160	0.1565	0.0993	0.1555	0.1188	0.2016
13,965	14,823	16,346	11,649	12,067	11,850	10,869	10,751	31,399	31,715
0.2041	0.1682	0.1741	0.1814	0.1874	0.2375	0.1914	0.2833	0.2132	0.3207
13,954	14,759	16,205	15,899	12,573	12,600	10,621	10,321	30,896	32,187
0.2106	0.1729	0.2058	0.1959	0.2192	0.2409	0.2416	0.3221	0.2571	0.3538
10.827	11,375	16,101	16,184	12,964	12,854	10,434	10,378	31,346	32,098
0.2132	0.1591	0.2237	0.2131	0.2322	0.2528	0.2714	0.3455	0.2641	0.3588
11,126	11,520	15,965	15,672	13,932	14,397	10,727	10,781	32,025	32,858
0.2208	0.1562	0.2519	0.2268	0.2458	0.2603	0.2967	0.3439	0.2838	0.3608
11,679	11,829	15,359	15,590	14,673	14,910	10,420	10,599	31,069	33,013
0.2267	0.1497	0.2632	0.2214	0.2436	0.2493	0.2912	0.3424	0.2856	0.3651
12,184	12,249	15,309	15,314	15,140	15,312	11,171	11,406	31,374	33,026
0.2253	0.1389	0.2832	0.2327	0.2555	0.2524	0.3099	0.3515	0.2936	0.3729
10,719	10,970	14,721	14,951	14,835	15,164	12,033	12,206	30,856	32,612
0.0316	0.0401	0.0373	0.0650	0.0444	0.0583	0.0440	0.0805	0.0532	0.0948
1,613	1,922	2,492	2,752	1,877	2,105	2,310	2,440	5,566	5,966
0.0523	0.0678	0.0678	0.1049	0.0610	0.0916	0.0787	0.1256	0.0913	0.1566
1,435	1,813	2,404	2,707	1,872	2,158	2,133	2,327	5,440	5,748
0.0450	0.0726	0.0772	0.0998	0.0809	0.1105	0.1114	0.1520	0.1153	0.1682
1,379	1,583	2,357	2,726	1,876	2,198	2,082	2,365	5,171	5,729
0.0483	0.0652	0.0964	0.1152	0.0856	0.1164	0.1164	0.1748	0.1235	0.1836
1,304	1,641	2,293	2,726	2,024	2,319	2,054	2,309	5,321	6,049
0.0642	0.0764	0.1024	0.1155	0.0888	0.1209	0.1272	0.1688	0.1407	0.1955
1,308	1,577	2,216	2,494	2,007	2,382	1,944	2,343	4,967	6,155
0.0630	0.0841	0.0988	0.1242	0.1034	0.1255	0.1192	0.1757	0.1453	0.1960
1,380	1,558	2,115	2,488	1,974	2,356	2,039	2,457	5,036	6,166
0.0830	0.0743	0.1223	0.1197	0.0934	0.1429	0.1319	0.1841	0.1447	0.2099
1,217	1,426	2,011	2,305	1,953	2,407	2,201	2,536	4,870	5,735

Table A. 2 Effects of Parental Characteristics and Family Structure on Eighth-Grade Reading and Math Scores (Standard Deviation Units)

	Reading	Math
Female	$0.042^{* * *}$	-0.01
No biological father in house in kindergarten	-0.02	$-0.046^{* * *}$
No father/stepfather in house in kindergarten	-0.008	0.016
SES in kindergarten	$0.058^{* * *}$	$0.056^{* * *}$
Age in kindergarten	$0.013^{* * *}$	0.004
Parental help with reading and math in third	-0.011	-0.006
\quad grade		
Average hours of TV on weekdays, third and	0.0003	-0.001
\quad fifth grades		
Does homework 5 or more days/week in third	-0.007	-0.003
\quad and fifth grades		
Female* father has BA or higher	$-0.039^{* *}$	-0.032^{*}
English as second language	-0.02	-0.017
Hispanic	-0.023	-0.003
Black	$-0.096^{* * *}$	$-0.10^{* * *}$
Asian	0.009	0.034^{*}
Constant	0.03	0.047
N	7,740	7,780

Source: Authors' compilation based on DiPrete and McDaniel (2011).
Note: ECLS-K sample size counts are rounded to the nearest 10.

* $p<.05 ;{ }^{* *} p<.01$; *** $p<.001$.

[^0]: Source: Authors' compilation based on IPUMS census data, 1970 to 2000 (Ruggles et al. 2010); American Community Survey (U.S. Census Bureau 2010).

[^1]: Source: McDaniel et al. (2011).

[^2]: Source: Authors' compilation based on Cumulative General Social Surveys, 1972 to 2008 (Smith et al. 2010).

[^3]: Source: Authors' compilation based on Snyder and Dillow (2007).

[^4]: Source; Authors' compilation based on National Longitudinal Study of the High School Class of 1972, High School \& Beyond, National Educational Longitudinal Study, and Educational Longitudinal Study (National Center for Education Statistics 1994, 1995, $2003,2007)$. Data are weighted and pertain to high school seniors who subsequently graduated from high school. Data from NLS72 are from self-reports. Data from HSB, NELS, and ELS are from transcripts. Note: All gender differences are significant at the 0.01 level.

